Properties

Label 1600.2.l.g.1201.6
Level $1600$
Weight $2$
Character 1600.1201
Analytic conductor $12.776$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(401,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.401");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.4767670494822400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 7 x^{10} - 4 x^{9} - 8 x^{8} + 24 x^{7} - 38 x^{6} + 48 x^{5} - 32 x^{4} - 32 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 400)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1201.6
Root \(0.618969 + 1.27156i\) of defining polynomial
Character \(\chi\) \(=\) 1600.1201
Dual form 1600.2.l.g.401.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.16859 - 2.16859i) q^{3} -3.30519i q^{7} -6.40553i q^{9} +O(q^{10})\) \(q+(2.16859 - 2.16859i) q^{3} -3.30519i q^{7} -6.40553i q^{9} +(-2.01163 - 2.01163i) q^{11} +(-0.794042 + 0.794042i) q^{13} -4.61575 q^{17} +(3.48786 - 3.48786i) q^{19} +(-7.16759 - 7.16759i) q^{21} +7.99801i q^{23} +(-7.38518 - 7.38518i) q^{27} +(-1.95065 + 1.95065i) q^{29} +5.12695 q^{31} -8.72480 q^{33} +(-0.448156 - 0.448156i) q^{37} +3.44390i q^{39} -4.02230i q^{41} +(4.97000 + 4.97000i) q^{43} -5.49112 q^{47} -3.92429 q^{49} +(-10.0096 + 10.0096i) q^{51} +(3.35125 + 3.35125i) q^{53} -15.1274i q^{57} +(-2.07673 - 2.07673i) q^{59} +(-0.557208 + 0.557208i) q^{61} -21.1715 q^{63} +(-0.636094 + 0.636094i) q^{67} +(17.3444 + 17.3444i) q^{69} -6.85258i q^{71} -10.5177i q^{73} +(-6.64883 + 6.64883i) q^{77} +17.3005 q^{79} -12.8142 q^{81} +(9.48015 - 9.48015i) q^{83} +8.46030i q^{87} -7.62073i q^{89} +(2.62446 + 2.62446i) q^{91} +(11.1182 - 11.1182i) q^{93} -0.709082 q^{97} +(-12.8856 + 12.8856i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{3}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{3} + 2 q^{11} + 4 q^{13} + 8 q^{17} + 14 q^{19} - 20 q^{21} - 10 q^{27} + 4 q^{31} - 28 q^{33} - 8 q^{37} + 8 q^{47} + 4 q^{49} - 10 q^{51} + 16 q^{53} - 20 q^{59} + 4 q^{61} - 8 q^{63} + 50 q^{67} + 8 q^{77} - 12 q^{79} - 8 q^{81} - 2 q^{83} + 44 q^{93} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.16859 2.16859i 1.25203 1.25203i 0.297227 0.954807i \(-0.403938\pi\)
0.954807 0.297227i \(-0.0960617\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.30519i 1.24924i −0.780927 0.624622i \(-0.785253\pi\)
0.780927 0.624622i \(-0.214747\pi\)
\(8\) 0 0
\(9\) 6.40553i 2.13518i
\(10\) 0 0
\(11\) −2.01163 2.01163i −0.606530 0.606530i 0.335507 0.942038i \(-0.391092\pi\)
−0.942038 + 0.335507i \(0.891092\pi\)
\(12\) 0 0
\(13\) −0.794042 + 0.794042i −0.220228 + 0.220228i −0.808594 0.588367i \(-0.799771\pi\)
0.588367 + 0.808594i \(0.299771\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.61575 −1.11948 −0.559741 0.828667i \(-0.689100\pi\)
−0.559741 + 0.828667i \(0.689100\pi\)
\(18\) 0 0
\(19\) 3.48786 3.48786i 0.800169 0.800169i −0.182953 0.983122i \(-0.558566\pi\)
0.983122 + 0.182953i \(0.0585655\pi\)
\(20\) 0 0
\(21\) −7.16759 7.16759i −1.56410 1.56410i
\(22\) 0 0
\(23\) 7.99801i 1.66770i 0.551991 + 0.833850i \(0.313868\pi\)
−0.551991 + 0.833850i \(0.686132\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −7.38518 7.38518i −1.42128 1.42128i
\(28\) 0 0
\(29\) −1.95065 + 1.95065i −0.362227 + 0.362227i −0.864632 0.502406i \(-0.832448\pi\)
0.502406 + 0.864632i \(0.332448\pi\)
\(30\) 0 0
\(31\) 5.12695 0.920828 0.460414 0.887704i \(-0.347701\pi\)
0.460414 + 0.887704i \(0.347701\pi\)
\(32\) 0 0
\(33\) −8.72480 −1.51879
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.448156 0.448156i −0.0736764 0.0736764i 0.669308 0.742985i \(-0.266591\pi\)
−0.742985 + 0.669308i \(0.766591\pi\)
\(38\) 0 0
\(39\) 3.44390i 0.551465i
\(40\) 0 0
\(41\) 4.02230i 0.628177i −0.949394 0.314089i \(-0.898301\pi\)
0.949394 0.314089i \(-0.101699\pi\)
\(42\) 0 0
\(43\) 4.97000 + 4.97000i 0.757918 + 0.757918i 0.975943 0.218025i \(-0.0699615\pi\)
−0.218025 + 0.975943i \(0.569961\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.49112 −0.800962 −0.400481 0.916305i \(-0.631157\pi\)
−0.400481 + 0.916305i \(0.631157\pi\)
\(48\) 0 0
\(49\) −3.92429 −0.560612
\(50\) 0 0
\(51\) −10.0096 + 10.0096i −1.40163 + 1.40163i
\(52\) 0 0
\(53\) 3.35125 + 3.35125i 0.460330 + 0.460330i 0.898763 0.438434i \(-0.144467\pi\)
−0.438434 + 0.898763i \(0.644467\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 15.1274i 2.00368i
\(58\) 0 0
\(59\) −2.07673 2.07673i −0.270367 0.270367i 0.558881 0.829248i \(-0.311231\pi\)
−0.829248 + 0.558881i \(0.811231\pi\)
\(60\) 0 0
\(61\) −0.557208 + 0.557208i −0.0713432 + 0.0713432i −0.741878 0.670535i \(-0.766065\pi\)
0.670535 + 0.741878i \(0.266065\pi\)
\(62\) 0 0
\(63\) −21.1715 −2.66736
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −0.636094 + 0.636094i −0.0777112 + 0.0777112i −0.744894 0.667183i \(-0.767500\pi\)
0.667183 + 0.744894i \(0.267500\pi\)
\(68\) 0 0
\(69\) 17.3444 + 17.3444i 2.08802 + 2.08802i
\(70\) 0 0
\(71\) 6.85258i 0.813252i −0.913595 0.406626i \(-0.866705\pi\)
0.913595 0.406626i \(-0.133295\pi\)
\(72\) 0 0
\(73\) 10.5177i 1.23101i −0.788134 0.615504i \(-0.788953\pi\)
0.788134 0.615504i \(-0.211047\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.64883 + 6.64883i −0.757705 + 0.757705i
\(78\) 0 0
\(79\) 17.3005 1.94646 0.973230 0.229833i \(-0.0738179\pi\)
0.973230 + 0.229833i \(0.0738179\pi\)
\(80\) 0 0
\(81\) −12.8142 −1.42380
\(82\) 0 0
\(83\) 9.48015 9.48015i 1.04058 1.04058i 0.0414412 0.999141i \(-0.486805\pi\)
0.999141 0.0414412i \(-0.0131949\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.46030i 0.907040i
\(88\) 0 0
\(89\) 7.62073i 0.807796i −0.914804 0.403898i \(-0.867655\pi\)
0.914804 0.403898i \(-0.132345\pi\)
\(90\) 0 0
\(91\) 2.62446 + 2.62446i 0.275118 + 0.275118i
\(92\) 0 0
\(93\) 11.1182 11.1182i 1.15291 1.15291i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.709082 −0.0719964 −0.0359982 0.999352i \(-0.511461\pi\)
−0.0359982 + 0.999352i \(0.511461\pi\)
\(98\) 0 0
\(99\) −12.8856 + 12.8856i −1.29505 + 1.29505i
\(100\) 0 0
\(101\) 6.16223 + 6.16223i 0.613164 + 0.613164i 0.943769 0.330605i \(-0.107253\pi\)
−0.330605 + 0.943769i \(0.607253\pi\)
\(102\) 0 0
\(103\) 15.9410i 1.57072i −0.619040 0.785359i \(-0.712478\pi\)
0.619040 0.785359i \(-0.287522\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.38717 3.38717i −0.327450 0.327450i 0.524166 0.851616i \(-0.324377\pi\)
−0.851616 + 0.524166i \(0.824377\pi\)
\(108\) 0 0
\(109\) −2.43964 + 2.43964i −0.233675 + 0.233675i −0.814225 0.580550i \(-0.802838\pi\)
0.580550 + 0.814225i \(0.302838\pi\)
\(110\) 0 0
\(111\) −1.94373 −0.184491
\(112\) 0 0
\(113\) −1.09801 −0.103292 −0.0516461 0.998665i \(-0.516447\pi\)
−0.0516461 + 0.998665i \(0.516447\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.08626 + 5.08626i 0.470225 + 0.470225i
\(118\) 0 0
\(119\) 15.2559i 1.39851i
\(120\) 0 0
\(121\) 2.90666i 0.264242i
\(122\) 0 0
\(123\) −8.72270 8.72270i −0.786499 0.786499i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.51159 −0.134131 −0.0670657 0.997749i \(-0.521364\pi\)
−0.0670657 + 0.997749i \(0.521364\pi\)
\(128\) 0 0
\(129\) 21.5557 1.89788
\(130\) 0 0
\(131\) 9.21660 9.21660i 0.805258 0.805258i −0.178654 0.983912i \(-0.557174\pi\)
0.983912 + 0.178654i \(0.0571743\pi\)
\(132\) 0 0
\(133\) −11.5280 11.5280i −0.999607 0.999607i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.38639i 0.289318i 0.989482 + 0.144659i \(0.0462086\pi\)
−0.989482 + 0.144659i \(0.953791\pi\)
\(138\) 0 0
\(139\) 2.09626 + 2.09626i 0.177802 + 0.177802i 0.790397 0.612595i \(-0.209874\pi\)
−0.612595 + 0.790397i \(0.709874\pi\)
\(140\) 0 0
\(141\) −11.9080 + 11.9080i −1.00283 + 1.00283i
\(142\) 0 0
\(143\) 3.19464 0.267149
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −8.51015 + 8.51015i −0.701906 + 0.701906i
\(148\) 0 0
\(149\) −2.45247 2.45247i −0.200915 0.200915i 0.599477 0.800392i \(-0.295375\pi\)
−0.800392 + 0.599477i \(0.795375\pi\)
\(150\) 0 0
\(151\) 1.11727i 0.0909222i −0.998966 0.0454611i \(-0.985524\pi\)
0.998966 0.0454611i \(-0.0144757\pi\)
\(152\) 0 0
\(153\) 29.5663i 2.39029i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −15.8377 + 15.8377i −1.26398 + 1.26398i −0.314839 + 0.949145i \(0.601950\pi\)
−0.949145 + 0.314839i \(0.898050\pi\)
\(158\) 0 0
\(159\) 14.5349 1.15270
\(160\) 0 0
\(161\) 26.4349 2.08337
\(162\) 0 0
\(163\) −7.22102 + 7.22102i −0.565594 + 0.565594i −0.930891 0.365297i \(-0.880967\pi\)
0.365297 + 0.930891i \(0.380967\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.2304i 1.02380i −0.859044 0.511901i \(-0.828941\pi\)
0.859044 0.511901i \(-0.171059\pi\)
\(168\) 0 0
\(169\) 11.7390i 0.903000i
\(170\) 0 0
\(171\) −22.3416 22.3416i −1.70850 1.70850i
\(172\) 0 0
\(173\) −11.7503 + 11.7503i −0.893355 + 0.893355i −0.994837 0.101482i \(-0.967641\pi\)
0.101482 + 0.994837i \(0.467641\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −9.00712 −0.677017
\(178\) 0 0
\(179\) −4.84732 + 4.84732i −0.362306 + 0.362306i −0.864661 0.502355i \(-0.832467\pi\)
0.502355 + 0.864661i \(0.332467\pi\)
\(180\) 0 0
\(181\) 10.5742 + 10.5742i 0.785976 + 0.785976i 0.980832 0.194856i \(-0.0624240\pi\)
−0.194856 + 0.980832i \(0.562424\pi\)
\(182\) 0 0
\(183\) 2.41671i 0.178648i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.28519 + 9.28519i 0.679000 + 0.679000i
\(188\) 0 0
\(189\) −24.4094 + 24.4094i −1.77553 + 1.77553i
\(190\) 0 0
\(191\) −7.94268 −0.574712 −0.287356 0.957824i \(-0.592776\pi\)
−0.287356 + 0.957824i \(0.592776\pi\)
\(192\) 0 0
\(193\) 20.8617 1.50166 0.750829 0.660496i \(-0.229654\pi\)
0.750829 + 0.660496i \(0.229654\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.07707 2.07707i −0.147985 0.147985i 0.629232 0.777217i \(-0.283369\pi\)
−0.777217 + 0.629232i \(0.783369\pi\)
\(198\) 0 0
\(199\) 23.2807i 1.65033i −0.564893 0.825164i \(-0.691083\pi\)
0.564893 0.825164i \(-0.308917\pi\)
\(200\) 0 0
\(201\) 2.75885i 0.194594i
\(202\) 0 0
\(203\) 6.44727 + 6.44727i 0.452510 + 0.452510i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 51.2315 3.56083
\(208\) 0 0
\(209\) −14.0326 −0.970653
\(210\) 0 0
\(211\) 2.51586 2.51586i 0.173199 0.173199i −0.615184 0.788383i \(-0.710918\pi\)
0.788383 + 0.615184i \(0.210918\pi\)
\(212\) 0 0
\(213\) −14.8604 14.8604i −1.01822 1.01822i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.9456i 1.15034i
\(218\) 0 0
\(219\) −22.8086 22.8086i −1.54126 1.54126i
\(220\) 0 0
\(221\) 3.66510 3.66510i 0.246541 0.246541i
\(222\) 0 0
\(223\) 10.9088 0.730507 0.365253 0.930908i \(-0.380982\pi\)
0.365253 + 0.930908i \(0.380982\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.6347 + 11.6347i −0.772220 + 0.772220i −0.978494 0.206275i \(-0.933866\pi\)
0.206275 + 0.978494i \(0.433866\pi\)
\(228\) 0 0
\(229\) −1.60760 1.60760i −0.106233 0.106233i 0.651992 0.758226i \(-0.273933\pi\)
−0.758226 + 0.651992i \(0.773933\pi\)
\(230\) 0 0
\(231\) 28.8371i 1.89734i
\(232\) 0 0
\(233\) 23.8100i 1.55985i 0.625875 + 0.779924i \(0.284742\pi\)
−0.625875 + 0.779924i \(0.715258\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 37.5177 37.5177i 2.43703 2.43703i
\(238\) 0 0
\(239\) 0.199630 0.0129130 0.00645649 0.999979i \(-0.497945\pi\)
0.00645649 + 0.999979i \(0.497945\pi\)
\(240\) 0 0
\(241\) −16.8755 −1.08705 −0.543525 0.839393i \(-0.682911\pi\)
−0.543525 + 0.839393i \(0.682911\pi\)
\(242\) 0 0
\(243\) −5.63317 + 5.63317i −0.361368 + 0.361368i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.53901i 0.352439i
\(248\) 0 0
\(249\) 41.1171i 2.60569i
\(250\) 0 0
\(251\) 6.10023 + 6.10023i 0.385043 + 0.385043i 0.872915 0.487872i \(-0.162227\pi\)
−0.487872 + 0.872915i \(0.662227\pi\)
\(252\) 0 0
\(253\) 16.0891 16.0891i 1.01151 1.01151i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.8360 1.23733 0.618667 0.785653i \(-0.287673\pi\)
0.618667 + 0.785653i \(0.287673\pi\)
\(258\) 0 0
\(259\) −1.48124 + 1.48124i −0.0920399 + 0.0920399i
\(260\) 0 0
\(261\) 12.4949 + 12.4949i 0.773418 + 0.773418i
\(262\) 0 0
\(263\) 7.14438i 0.440542i −0.975439 0.220271i \(-0.929306\pi\)
0.975439 0.220271i \(-0.0706941\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −16.5262 16.5262i −1.01139 1.01139i
\(268\) 0 0
\(269\) 21.7716 21.7716i 1.32744 1.32744i 0.419844 0.907596i \(-0.362085\pi\)
0.907596 0.419844i \(-0.137915\pi\)
\(270\) 0 0
\(271\) 4.71328 0.286312 0.143156 0.989700i \(-0.454275\pi\)
0.143156 + 0.989700i \(0.454275\pi\)
\(272\) 0 0
\(273\) 11.3827 0.688915
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −20.4588 20.4588i −1.22925 1.22925i −0.964247 0.265006i \(-0.914626\pi\)
−0.265006 0.964247i \(-0.585374\pi\)
\(278\) 0 0
\(279\) 32.8409i 1.96613i
\(280\) 0 0
\(281\) 17.6481i 1.05280i −0.850239 0.526398i \(-0.823542\pi\)
0.850239 0.526398i \(-0.176458\pi\)
\(282\) 0 0
\(283\) 18.1525 + 18.1525i 1.07906 + 1.07906i 0.996594 + 0.0824607i \(0.0262779\pi\)
0.0824607 + 0.996594i \(0.473722\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −13.2945 −0.784747
\(288\) 0 0
\(289\) 4.30511 0.253242
\(290\) 0 0
\(291\) −1.53771 + 1.53771i −0.0901419 + 0.0901419i
\(292\) 0 0
\(293\) 0.638480 + 0.638480i 0.0373004 + 0.0373004i 0.725511 0.688211i \(-0.241603\pi\)
−0.688211 + 0.725511i \(0.741603\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 29.7126i 1.72410i
\(298\) 0 0
\(299\) −6.35076 6.35076i −0.367274 0.367274i
\(300\) 0 0
\(301\) 16.4268 16.4268i 0.946825 0.946825i
\(302\) 0 0
\(303\) 26.7266 1.53540
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4.52224 4.52224i 0.258098 0.258098i −0.566182 0.824280i \(-0.691580\pi\)
0.824280 + 0.566182i \(0.191580\pi\)
\(308\) 0 0
\(309\) −34.5695 34.5695i −1.96659 1.96659i
\(310\) 0 0
\(311\) 14.1014i 0.799620i −0.916598 0.399810i \(-0.869076\pi\)
0.916598 0.399810i \(-0.130924\pi\)
\(312\) 0 0
\(313\) 11.9204i 0.673779i 0.941544 + 0.336889i \(0.109375\pi\)
−0.941544 + 0.336889i \(0.890625\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.6516 + 17.6516i −0.991410 + 0.991410i −0.999963 0.00855359i \(-0.997277\pi\)
0.00855359 + 0.999963i \(0.497277\pi\)
\(318\) 0 0
\(319\) 7.84798 0.439403
\(320\) 0 0
\(321\) −14.6907 −0.819958
\(322\) 0 0
\(323\) −16.0991 + 16.0991i −0.895775 + 0.895775i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.5811i 0.585138i
\(328\) 0 0
\(329\) 18.1492i 1.00060i
\(330\) 0 0
\(331\) 24.9785 + 24.9785i 1.37294 + 1.37294i 0.856053 + 0.516888i \(0.172910\pi\)
0.516888 + 0.856053i \(0.327090\pi\)
\(332\) 0 0
\(333\) −2.87068 + 2.87068i −0.157312 + 0.157312i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 24.3167 1.32462 0.662308 0.749231i \(-0.269577\pi\)
0.662308 + 0.749231i \(0.269577\pi\)
\(338\) 0 0
\(339\) −2.38113 + 2.38113i −0.129325 + 0.129325i
\(340\) 0 0
\(341\) −10.3136 10.3136i −0.558510 0.558510i
\(342\) 0 0
\(343\) 10.1658i 0.548903i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.3818 + 17.3818i 0.933106 + 0.933106i 0.997899 0.0647931i \(-0.0206387\pi\)
−0.0647931 + 0.997899i \(0.520639\pi\)
\(348\) 0 0
\(349\) −0.773103 + 0.773103i −0.0413832 + 0.0413832i −0.727496 0.686112i \(-0.759316\pi\)
0.686112 + 0.727496i \(0.259316\pi\)
\(350\) 0 0
\(351\) 11.7283 0.626010
\(352\) 0 0
\(353\) −13.3720 −0.711720 −0.355860 0.934539i \(-0.615812\pi\)
−0.355860 + 0.934539i \(0.615812\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 33.0838 + 33.0838i 1.75098 + 1.75098i
\(358\) 0 0
\(359\) 28.5413i 1.50635i 0.657818 + 0.753177i \(0.271480\pi\)
−0.657818 + 0.753177i \(0.728520\pi\)
\(360\) 0 0
\(361\) 5.33027i 0.280541i
\(362\) 0 0
\(363\) −6.30335 6.30335i −0.330840 0.330840i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −0.909186 −0.0474591 −0.0237296 0.999718i \(-0.507554\pi\)
−0.0237296 + 0.999718i \(0.507554\pi\)
\(368\) 0 0
\(369\) −25.7649 −1.34127
\(370\) 0 0
\(371\) 11.0765 11.0765i 0.575064 0.575064i
\(372\) 0 0
\(373\) 26.5010 + 26.5010i 1.37217 + 1.37217i 0.857223 + 0.514946i \(0.172188\pi\)
0.514946 + 0.857223i \(0.327812\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.09780i 0.159545i
\(378\) 0 0
\(379\) −1.23724 1.23724i −0.0635529 0.0635529i 0.674616 0.738169i \(-0.264309\pi\)
−0.738169 + 0.674616i \(0.764309\pi\)
\(380\) 0 0
\(381\) −3.27800 + 3.27800i −0.167937 + 0.167937i
\(382\) 0 0
\(383\) −15.7161 −0.803057 −0.401529 0.915846i \(-0.631521\pi\)
−0.401529 + 0.915846i \(0.631521\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 31.8355 31.8355i 1.61829 1.61829i
\(388\) 0 0
\(389\) 16.2799 + 16.2799i 0.825423 + 0.825423i 0.986880 0.161457i \(-0.0516193\pi\)
−0.161457 + 0.986880i \(0.551619\pi\)
\(390\) 0 0
\(391\) 36.9168i 1.86696i
\(392\) 0 0
\(393\) 39.9740i 2.01642i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −22.8944 + 22.8944i −1.14903 + 1.14903i −0.162292 + 0.986743i \(0.551889\pi\)
−0.986743 + 0.162292i \(0.948111\pi\)
\(398\) 0 0
\(399\) −49.9990 −2.50308
\(400\) 0 0
\(401\) 15.8553 0.791778 0.395889 0.918298i \(-0.370437\pi\)
0.395889 + 0.918298i \(0.370437\pi\)
\(402\) 0 0
\(403\) −4.07102 + 4.07102i −0.202792 + 0.202792i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.80305i 0.0893740i
\(408\) 0 0
\(409\) 10.0220i 0.495557i −0.968817 0.247779i \(-0.920299\pi\)
0.968817 0.247779i \(-0.0797006\pi\)
\(410\) 0 0
\(411\) 7.34367 + 7.34367i 0.362236 + 0.362236i
\(412\) 0 0
\(413\) −6.86398 + 6.86398i −0.337754 + 0.337754i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 9.09182 0.445228
\(418\) 0 0
\(419\) −14.4998 + 14.4998i −0.708362 + 0.708362i −0.966191 0.257829i \(-0.916993\pi\)
0.257829 + 0.966191i \(0.416993\pi\)
\(420\) 0 0
\(421\) 12.9983 + 12.9983i 0.633498 + 0.633498i 0.948944 0.315446i \(-0.102154\pi\)
−0.315446 + 0.948944i \(0.602154\pi\)
\(422\) 0 0
\(423\) 35.1735i 1.71020i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.84168 + 1.84168i 0.0891251 + 0.0891251i
\(428\) 0 0
\(429\) 6.92786 6.92786i 0.334480 0.334480i
\(430\) 0 0
\(431\) 34.4404 1.65894 0.829469 0.558553i \(-0.188643\pi\)
0.829469 + 0.558553i \(0.188643\pi\)
\(432\) 0 0
\(433\) 14.5895 0.701128 0.350564 0.936539i \(-0.385990\pi\)
0.350564 + 0.936539i \(0.385990\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 27.8959 + 27.8959i 1.33444 + 1.33444i
\(438\) 0 0
\(439\) 5.70179i 0.272131i −0.990700 0.136066i \(-0.956554\pi\)
0.990700 0.136066i \(-0.0434458\pi\)
\(440\) 0 0
\(441\) 25.1371i 1.19701i
\(442\) 0 0
\(443\) 5.03375 + 5.03375i 0.239161 + 0.239161i 0.816503 0.577342i \(-0.195910\pi\)
−0.577342 + 0.816503i \(0.695910\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −10.6368 −0.503104
\(448\) 0 0
\(449\) 22.2502 1.05005 0.525025 0.851087i \(-0.324056\pi\)
0.525025 + 0.851087i \(0.324056\pi\)
\(450\) 0 0
\(451\) −8.09139 + 8.09139i −0.381009 + 0.381009i
\(452\) 0 0
\(453\) −2.42290 2.42290i −0.113838 0.113838i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.92927i 0.417694i 0.977948 + 0.208847i \(0.0669710\pi\)
−0.977948 + 0.208847i \(0.933029\pi\)
\(458\) 0 0
\(459\) 34.0881 + 34.0881i 1.59110 + 1.59110i
\(460\) 0 0
\(461\) −8.14776 + 8.14776i −0.379479 + 0.379479i −0.870914 0.491435i \(-0.836472\pi\)
0.491435 + 0.870914i \(0.336472\pi\)
\(462\) 0 0
\(463\) −31.7058 −1.47349 −0.736747 0.676168i \(-0.763639\pi\)
−0.736747 + 0.676168i \(0.763639\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.7683 + 17.7683i −0.822219 + 0.822219i −0.986426 0.164207i \(-0.947494\pi\)
0.164207 + 0.986426i \(0.447494\pi\)
\(468\) 0 0
\(469\) 2.10241 + 2.10241i 0.0970803 + 0.0970803i
\(470\) 0 0
\(471\) 68.6907i 3.16510i
\(472\) 0 0
\(473\) 19.9956i 0.919401i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 21.4665 21.4665i 0.982885 0.982885i
\(478\) 0 0
\(479\) 7.80806 0.356759 0.178380 0.983962i \(-0.442914\pi\)
0.178380 + 0.983962i \(0.442914\pi\)
\(480\) 0 0
\(481\) 0.711710 0.0324512
\(482\) 0 0
\(483\) 57.3264 57.3264i 2.60844 2.60844i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 27.6753i 1.25409i −0.778984 0.627044i \(-0.784265\pi\)
0.778984 0.627044i \(-0.215735\pi\)
\(488\) 0 0
\(489\) 31.3188i 1.41629i
\(490\) 0 0
\(491\) 11.7995 + 11.7995i 0.532505 + 0.532505i 0.921317 0.388812i \(-0.127114\pi\)
−0.388812 + 0.921317i \(0.627114\pi\)
\(492\) 0 0
\(493\) 9.00370 9.00370i 0.405506 0.405506i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −22.6491 −1.01595
\(498\) 0 0
\(499\) 25.0477 25.0477i 1.12129 1.12129i 0.129743 0.991548i \(-0.458585\pi\)
0.991548 0.129743i \(-0.0414153\pi\)
\(500\) 0 0
\(501\) −28.6914 28.6914i −1.28184 1.28184i
\(502\) 0 0
\(503\) 22.8644i 1.01947i 0.860331 + 0.509736i \(0.170257\pi\)
−0.860331 + 0.509736i \(0.829743\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 25.4570 + 25.4570i 1.13059 + 1.13059i
\(508\) 0 0
\(509\) −17.1633 + 17.1633i −0.760748 + 0.760748i −0.976458 0.215710i \(-0.930794\pi\)
0.215710 + 0.976458i \(0.430794\pi\)
\(510\) 0 0
\(511\) −34.7631 −1.53783
\(512\) 0 0
\(513\) −51.5169 −2.27453
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 11.0461 + 11.0461i 0.485808 + 0.485808i
\(518\) 0 0
\(519\) 50.9629i 2.23702i
\(520\) 0 0
\(521\) 11.5206i 0.504726i 0.967633 + 0.252363i \(0.0812077\pi\)
−0.967633 + 0.252363i \(0.918792\pi\)
\(522\) 0 0
\(523\) −25.4249 25.4249i −1.11175 1.11175i −0.992913 0.118841i \(-0.962082\pi\)
−0.118841 0.992913i \(-0.537918\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −23.6647 −1.03085
\(528\) 0 0
\(529\) −40.9681 −1.78122
\(530\) 0 0
\(531\) −13.3025 + 13.3025i −0.577281 + 0.577281i
\(532\) 0 0
\(533\) 3.19387 + 3.19387i 0.138342 + 0.138342i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 21.0237i 0.907239i
\(538\) 0 0
\(539\) 7.89423 + 7.89423i 0.340028 + 0.340028i
\(540\) 0 0
\(541\) −29.7997 + 29.7997i −1.28119 + 1.28119i −0.341196 + 0.939992i \(0.610832\pi\)
−0.939992 + 0.341196i \(0.889168\pi\)
\(542\) 0 0
\(543\) 45.8622 1.96814
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.3699 28.3699i 1.21301 1.21301i 0.242979 0.970032i \(-0.421875\pi\)
0.970032 0.242979i \(-0.0781246\pi\)
\(548\) 0 0
\(549\) 3.56921 + 3.56921i 0.152330 + 0.152330i
\(550\) 0 0
\(551\) 13.6072i 0.579685i
\(552\) 0 0
\(553\) 57.1815i 2.43161i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.7769 21.7769i 0.922718 0.922718i −0.0745028 0.997221i \(-0.523737\pi\)
0.997221 + 0.0745028i \(0.0237370\pi\)
\(558\) 0 0
\(559\) −7.89278 −0.333829
\(560\) 0 0
\(561\) 40.2715 1.70026
\(562\) 0 0
\(563\) −10.9022 + 10.9022i −0.459473 + 0.459473i −0.898482 0.439010i \(-0.855329\pi\)
0.439010 + 0.898482i \(0.355329\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 42.3534i 1.77868i
\(568\) 0 0
\(569\) 31.1881i 1.30747i 0.756723 + 0.653736i \(0.226799\pi\)
−0.756723 + 0.653736i \(0.773201\pi\)
\(570\) 0 0
\(571\) 2.20354 + 2.20354i 0.0922153 + 0.0922153i 0.751710 0.659494i \(-0.229230\pi\)
−0.659494 + 0.751710i \(0.729230\pi\)
\(572\) 0 0
\(573\) −17.2244 + 17.2244i −0.719559 + 0.719559i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.42524 0.350747 0.175374 0.984502i \(-0.443887\pi\)
0.175374 + 0.984502i \(0.443887\pi\)
\(578\) 0 0
\(579\) 45.2404 45.2404i 1.88013 1.88013i
\(580\) 0 0
\(581\) −31.3337 31.3337i −1.29994 1.29994i
\(582\) 0 0
\(583\) 13.4830i 0.558408i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.3370 + 19.3370i 0.798125 + 0.798125i 0.982800 0.184675i \(-0.0591231\pi\)
−0.184675 + 0.982800i \(0.559123\pi\)
\(588\) 0 0
\(589\) 17.8821 17.8821i 0.736818 0.736818i
\(590\) 0 0
\(591\) −9.00862 −0.370565
\(592\) 0 0
\(593\) 18.1804 0.746580 0.373290 0.927715i \(-0.378230\pi\)
0.373290 + 0.927715i \(0.378230\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −50.4863 50.4863i −2.06627 2.06627i
\(598\) 0 0
\(599\) 1.64695i 0.0672927i 0.999434 + 0.0336463i \(0.0107120\pi\)
−0.999434 + 0.0336463i \(0.989288\pi\)
\(600\) 0 0
\(601\) 12.7485i 0.520021i 0.965606 + 0.260011i \(0.0837261\pi\)
−0.965606 + 0.260011i \(0.916274\pi\)
\(602\) 0 0
\(603\) 4.07452 + 4.07452i 0.165927 + 0.165927i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −15.6773 −0.636322 −0.318161 0.948037i \(-0.603065\pi\)
−0.318161 + 0.948037i \(0.603065\pi\)
\(608\) 0 0
\(609\) 27.9629 1.13311
\(610\) 0 0
\(611\) 4.36018 4.36018i 0.176394 0.176394i
\(612\) 0 0
\(613\) 8.29399 + 8.29399i 0.334991 + 0.334991i 0.854478 0.519487i \(-0.173877\pi\)
−0.519487 + 0.854478i \(0.673877\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.3330i 0.818575i −0.912406 0.409287i \(-0.865777\pi\)
0.912406 0.409287i \(-0.134223\pi\)
\(618\) 0 0
\(619\) −12.5878 12.5878i −0.505946 0.505946i 0.407333 0.913280i \(-0.366459\pi\)
−0.913280 + 0.407333i \(0.866459\pi\)
\(620\) 0 0
\(621\) 59.0667 59.0667i 2.37027 2.37027i
\(622\) 0 0
\(623\) −25.1880 −1.00914
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −30.4308 + 30.4308i −1.21529 + 1.21529i
\(628\) 0 0
\(629\) 2.06858 + 2.06858i 0.0824795 + 0.0824795i
\(630\) 0 0
\(631\) 21.4887i 0.855453i −0.903908 0.427726i \(-0.859315\pi\)
0.903908 0.427726i \(-0.140685\pi\)
\(632\) 0 0
\(633\) 10.9117i 0.433702i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.11605 3.11605i 0.123462 0.123462i
\(638\) 0 0
\(639\) −43.8944 −1.73644
\(640\) 0 0
\(641\) 26.1687 1.03360 0.516800 0.856106i \(-0.327123\pi\)
0.516800 + 0.856106i \(0.327123\pi\)
\(642\) 0 0
\(643\) 14.6501 14.6501i 0.577743 0.577743i −0.356538 0.934281i \(-0.616043\pi\)
0.934281 + 0.356538i \(0.116043\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.2623i 0.639337i 0.947530 + 0.319668i \(0.103571\pi\)
−0.947530 + 0.319668i \(0.896429\pi\)
\(648\) 0 0
\(649\) 8.35522i 0.327971i
\(650\) 0 0
\(651\) −36.7479 36.7479i −1.44026 1.44026i
\(652\) 0 0
\(653\) −32.0639 + 32.0639i −1.25476 + 1.25476i −0.301194 + 0.953563i \(0.597385\pi\)
−0.953563 + 0.301194i \(0.902615\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −67.3717 −2.62842
\(658\) 0 0
\(659\) 7.04696 7.04696i 0.274511 0.274511i −0.556402 0.830913i \(-0.687819\pi\)
0.830913 + 0.556402i \(0.187819\pi\)
\(660\) 0 0
\(661\) 5.78655 + 5.78655i 0.225071 + 0.225071i 0.810630 0.585559i \(-0.199125\pi\)
−0.585559 + 0.810630i \(0.699125\pi\)
\(662\) 0 0
\(663\) 15.8962i 0.617355i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −15.6013 15.6013i −0.604085 0.604085i
\(668\) 0 0
\(669\) 23.6567 23.6567i 0.914619 0.914619i
\(670\) 0 0
\(671\) 2.24180 0.0865436
\(672\) 0 0
\(673\) −35.3380 −1.36218 −0.681090 0.732200i \(-0.738494\pi\)
−0.681090 + 0.732200i \(0.738494\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.72259 7.72259i −0.296803 0.296803i 0.542957 0.839760i \(-0.317305\pi\)
−0.839760 + 0.542957i \(0.817305\pi\)
\(678\) 0 0
\(679\) 2.34365i 0.0899411i
\(680\) 0 0
\(681\) 50.4615i 1.93369i
\(682\) 0 0
\(683\) −15.6011 15.6011i −0.596958 0.596958i 0.342544 0.939502i \(-0.388711\pi\)
−0.939502 + 0.342544i \(0.888711\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −6.97246 −0.266016
\(688\) 0 0
\(689\) −5.32207 −0.202755
\(690\) 0 0
\(691\) −30.0975 + 30.0975i −1.14496 + 1.14496i −0.157433 + 0.987530i \(0.550322\pi\)
−0.987530 + 0.157433i \(0.949678\pi\)
\(692\) 0 0
\(693\) 42.5893 + 42.5893i 1.61783 + 1.61783i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18.5659i 0.703234i
\(698\) 0 0
\(699\) 51.6341 + 51.6341i 1.95298 + 1.95298i
\(700\) 0 0
\(701\) 14.8151 14.8151i 0.559559 0.559559i −0.369623 0.929182i \(-0.620513\pi\)
0.929182 + 0.369623i \(0.120513\pi\)
\(702\) 0 0
\(703\) −3.12621 −0.117907
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.3673 20.3673i 0.765992 0.765992i
\(708\) 0 0
\(709\) 9.26566 + 9.26566i 0.347979 + 0.347979i 0.859356 0.511377i \(-0.170864\pi\)
−0.511377 + 0.859356i \(0.670864\pi\)
\(710\) 0 0
\(711\) 110.819i 4.15604i
\(712\) 0 0
\(713\) 41.0054i 1.53567i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.432914 0.432914i 0.0161675 0.0161675i
\(718\) 0 0
\(719\) −40.8143 −1.52212 −0.761058 0.648684i \(-0.775320\pi\)
−0.761058 + 0.648684i \(0.775320\pi\)
\(720\) 0 0
\(721\) −52.6882 −1.96221
\(722\) 0 0
\(723\) −36.5961 + 36.5961i −1.36102 + 1.36102i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 5.20944i 0.193208i 0.995323 + 0.0966038i \(0.0307980\pi\)
−0.995323 + 0.0966038i \(0.969202\pi\)
\(728\) 0 0
\(729\) 14.0106i 0.518911i
\(730\) 0 0
\(731\) −22.9403 22.9403i −0.848476 0.848476i
\(732\) 0 0
\(733\) 14.7039 14.7039i 0.543099 0.543099i −0.381337 0.924436i \(-0.624536\pi\)
0.924436 + 0.381337i \(0.124536\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.55917 0.0942684
\(738\) 0 0
\(739\) −7.68017 + 7.68017i −0.282520 + 0.282520i −0.834113 0.551594i \(-0.814020\pi\)
0.551594 + 0.834113i \(0.314020\pi\)
\(740\) 0 0
\(741\) 12.0118 + 12.0118i 0.441265 + 0.441265i
\(742\) 0 0
\(743\) 34.9882i 1.28359i 0.766876 + 0.641796i \(0.221810\pi\)
−0.766876 + 0.641796i \(0.778190\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −60.7254 60.7254i −2.22183 2.22183i
\(748\) 0 0
\(749\) −11.1953 + 11.1953i −0.409066 + 0.409066i
\(750\) 0 0
\(751\) 33.1447 1.20947 0.604733 0.796428i \(-0.293280\pi\)
0.604733 + 0.796428i \(0.293280\pi\)
\(752\) 0 0
\(753\) 26.4577 0.964174
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −22.1553 22.1553i −0.805248 0.805248i 0.178663 0.983910i \(-0.442823\pi\)
−0.983910 + 0.178663i \(0.942823\pi\)
\(758\) 0 0
\(759\) 69.7810i 2.53289i
\(760\) 0 0
\(761\) 48.1426i 1.74517i −0.488466 0.872583i \(-0.662443\pi\)
0.488466 0.872583i \(-0.337557\pi\)
\(762\) 0 0
\(763\) 8.06347 + 8.06347i 0.291917 + 0.291917i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.29802 0.119084
\(768\) 0 0
\(769\) −41.1054 −1.48230 −0.741150 0.671339i \(-0.765719\pi\)
−0.741150 + 0.671339i \(0.765719\pi\)
\(770\) 0 0
\(771\) 43.0160 43.0160i 1.54918 1.54918i
\(772\) 0 0
\(773\) −10.8044 10.8044i −0.388607 0.388607i 0.485583 0.874190i \(-0.338607\pi\)
−0.874190 + 0.485583i \(0.838607\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 6.42440i 0.230474i
\(778\) 0 0
\(779\) −14.0292 14.0292i −0.502648 0.502648i
\(780\) 0 0
\(781\) −13.7849 + 13.7849i −0.493262 + 0.493262i
\(782\) 0 0
\(783\) 28.8118 1.02965
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 11.7496 11.7496i 0.418826 0.418826i −0.465973 0.884799i \(-0.654296\pi\)
0.884799 + 0.465973i \(0.154296\pi\)
\(788\) 0 0
\(789\) −15.4932 15.4932i −0.551573 0.551573i
\(790\) 0 0
\(791\) 3.62914i 0.129037i
\(792\) 0 0
\(793\) 0.884894i 0.0314235i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.9126 + 15.9126i −0.563652 + 0.563652i −0.930343 0.366691i \(-0.880491\pi\)
0.366691 + 0.930343i \(0.380491\pi\)
\(798\) 0 0
\(799\) 25.3456 0.896663
\(800\) 0 0
\(801\) −48.8148 −1.72479
\(802\) 0 0
\(803\) −21.1578 + 21.1578i −0.746643 + 0.746643i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 94.4274i 3.32400i
\(808\) 0 0
\(809\) 9.06814i 0.318819i 0.987213 + 0.159409i \(0.0509590\pi\)
−0.987213 + 0.159409i \(0.949041\pi\)
\(810\) 0 0
\(811\) 17.0825 + 17.0825i 0.599849 + 0.599849i 0.940272 0.340424i \(-0.110570\pi\)
−0.340424 + 0.940272i \(0.610570\pi\)
\(812\) 0 0
\(813\) 10.2212 10.2212i 0.358472 0.358472i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 34.6693 1.21293
\(818\) 0 0
\(819\) 16.8111 16.8111i 0.587426 0.587426i
\(820\) 0 0
\(821\) 18.0531 + 18.0531i 0.630057 + 0.630057i 0.948082 0.318026i \(-0.103020\pi\)
−0.318026 + 0.948082i \(0.603020\pi\)
\(822\) 0 0
\(823\) 25.3535i 0.883767i −0.897072 0.441884i \(-0.854310\pi\)
0.897072 0.441884i \(-0.145690\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.3396 + 15.3396i 0.533410 + 0.533410i 0.921585 0.388176i \(-0.126895\pi\)
−0.388176 + 0.921585i \(0.626895\pi\)
\(828\) 0 0
\(829\) 37.2546 37.2546i 1.29391 1.29391i 0.361555 0.932351i \(-0.382246\pi\)
0.932351 0.361555i \(-0.117754\pi\)
\(830\) 0 0
\(831\) −88.7335 −3.07813
\(832\) 0 0
\(833\) 18.1135 0.627596
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −37.8635 37.8635i −1.30875 1.30875i
\(838\) 0 0
\(839\) 17.9621i 0.620120i −0.950717 0.310060i \(-0.899651\pi\)
0.950717 0.310060i \(-0.100349\pi\)
\(840\) 0 0
\(841\) 21.3899i 0.737584i
\(842\) 0 0
\(843\) −38.2713 38.2713i −1.31813 1.31813i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −9.60708 −0.330103
\(848\) 0 0
\(849\) 78.7306 2.70203
\(850\) 0 0
\(851\) 3.58436 3.58436i 0.122870 0.122870i
\(852\) 0 0
\(853\) 9.29007 + 9.29007i 0.318086 + 0.318086i 0.848032 0.529946i \(-0.177788\pi\)
−0.529946 + 0.848032i \(0.677788\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.3997i 0.355246i −0.984099 0.177623i \(-0.943159\pi\)
0.984099 0.177623i \(-0.0568407\pi\)
\(858\) 0 0
\(859\) −15.3452 15.3452i −0.523571 0.523571i 0.395077 0.918648i \(-0.370718\pi\)
−0.918648 + 0.395077i \(0.870718\pi\)
\(860\) 0 0
\(861\) −28.8302 + 28.8302i −0.982530 + 0.982530i
\(862\) 0 0
\(863\) 8.81329 0.300008 0.150004 0.988685i \(-0.452071\pi\)
0.150004 + 0.988685i \(0.452071\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 9.33601 9.33601i 0.317067 0.317067i
\(868\) 0 0
\(869\) −34.8023 34.8023i −1.18059 1.18059i
\(870\) 0 0
\(871\) 1.01017i 0.0342283i
\(872\) 0 0
\(873\) 4.54205i 0.153725i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5.68862 5.68862i 0.192091 0.192091i −0.604508 0.796599i \(-0.706630\pi\)
0.796599 + 0.604508i \(0.206630\pi\)
\(878\) 0 0
\(879\) 2.76920 0.0934028
\(880\) 0 0
\(881\) −20.3573 −0.685856 −0.342928 0.939362i \(-0.611419\pi\)
−0.342928 + 0.939362i \(0.611419\pi\)
\(882\) 0 0
\(883\) −19.3524 + 19.3524i −0.651262 + 0.651262i −0.953297 0.302035i \(-0.902334\pi\)
0.302035 + 0.953297i \(0.402334\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.7863i 0.429323i −0.976689 0.214661i \(-0.931135\pi\)
0.976689 0.214661i \(-0.0688648\pi\)
\(888\) 0 0
\(889\) 4.99608i 0.167563i
\(890\) 0 0
\(891\) 25.7775 + 25.7775i 0.863579 + 0.863579i
\(892\) 0 0
\(893\) −19.1522 + 19.1522i −0.640905 + 0.640905i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −27.5443 −0.919678
\(898\) 0 0
\(899\) −10.0009 + 10.0009i −0.333548 + 0.333548i
\(900\) 0 0
\(901\) −15.4685 15.4685i −0.515331 0.515331i
\(902\) 0 0
\(903\) 71.2459i 2.37091i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.88449 2.88449i −0.0957780 0.0957780i 0.657594 0.753372i \(-0.271574\pi\)
−0.753372 + 0.657594i \(0.771574\pi\)
\(908\) 0 0
\(909\) 39.4723 39.4723i 1.30921 1.30921i
\(910\) 0 0
\(911\) −59.0271 −1.95565 −0.977827 0.209412i \(-0.932845\pi\)
−0.977827 + 0.209412i \(0.932845\pi\)
\(912\) 0 0
\(913\) −38.1412 −1.26229
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −30.4626 30.4626i −1.00596 1.00596i
\(918\) 0 0
\(919\) 24.0062i 0.791893i 0.918274 + 0.395946i \(0.129583\pi\)
−0.918274 + 0.395946i \(0.870417\pi\)
\(920\) 0 0
\(921\) 19.6137i 0.646294i
\(922\) 0 0
\(923\) 5.44124 + 5.44124i 0.179100 + 0.179100i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −102.111 −3.35376
\(928\) 0 0
\(929\) 15.1568 0.497279 0.248639 0.968596i \(-0.420017\pi\)
0.248639 + 0.968596i \(0.420017\pi\)
\(930\) 0 0
\(931\) −13.6873 + 13.6873i −0.448585 + 0.448585i
\(932\) 0 0
\(933\) −30.5802 30.5802i −1.00115 1.00115i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 39.9323i 1.30453i −0.757991 0.652266i \(-0.773819\pi\)
0.757991 0.652266i \(-0.226181\pi\)
\(938\) 0 0
\(939\) 25.8503 + 25.8503i 0.843594 + 0.843594i
\(940\) 0 0
\(941\) −21.6002 + 21.6002i −0.704145 + 0.704145i −0.965298 0.261153i \(-0.915897\pi\)
0.261153 + 0.965298i \(0.415897\pi\)
\(942\) 0 0
\(943\) 32.1704 1.04761
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.2944 + 16.2944i −0.529498 + 0.529498i −0.920423 0.390925i \(-0.872155\pi\)
0.390925 + 0.920423i \(0.372155\pi\)
\(948\) 0 0
\(949\) 8.35152 + 8.35152i 0.271102 + 0.271102i
\(950\) 0 0
\(951\) 76.5578i 2.48256i
\(952\) 0 0
\(953\) 12.0232i 0.389468i 0.980856 + 0.194734i \(0.0623844\pi\)
−0.980856 + 0.194734i \(0.937616\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 17.0190 17.0190i 0.550147 0.550147i
\(958\) 0 0
\(959\) 11.1927 0.361430
\(960\) 0 0
\(961\) −4.71434 −0.152076
\(962\) 0 0
\(963\) −21.6966 + 21.6966i −0.699164 + 0.699164i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 43.8237i 1.40927i 0.709568 + 0.704637i \(0.248890\pi\)
−0.709568 + 0.704637i \(0.751110\pi\)
\(968\) 0 0
\(969\) 69.8244i 2.24308i
\(970\) 0 0
\(971\) −35.9986 35.9986i −1.15525 1.15525i −0.985484 0.169766i \(-0.945699\pi\)
−0.169766 0.985484i \(-0.554301\pi\)
\(972\) 0 0
\(973\) 6.92852 6.92852i 0.222118 0.222118i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.204913 −0.00655576 −0.00327788 0.999995i \(-0.501043\pi\)
−0.00327788 + 0.999995i \(0.501043\pi\)
\(978\) 0 0
\(979\) −15.3301 + 15.3301i −0.489953 + 0.489953i
\(980\) 0 0
\(981\) 15.6272 + 15.6272i 0.498937 + 0.498937i
\(982\) 0 0
\(983\) 34.0060i 1.08462i 0.840177 + 0.542312i \(0.182451\pi\)
−0.840177 + 0.542312i \(0.817549\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 39.3581 + 39.3581i 1.25278 + 1.25278i
\(988\) 0 0
\(989\) −39.7501 + 39.7501i −1.26398 + 1.26398i
\(990\) 0 0
\(991\) −13.8223 −0.439079 −0.219539 0.975604i \(-0.570455\pi\)
−0.219539 + 0.975604i \(0.570455\pi\)
\(992\) 0 0
\(993\) 108.336 3.43794
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 6.37875 + 6.37875i 0.202017 + 0.202017i 0.800864 0.598847i \(-0.204374\pi\)
−0.598847 + 0.800864i \(0.704374\pi\)
\(998\) 0 0
\(999\) 6.61943i 0.209429i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.2.l.g.1201.6 12
4.3 odd 2 400.2.l.f.101.4 12
5.2 odd 4 1600.2.q.e.49.1 12
5.3 odd 4 1600.2.q.f.49.6 12
5.4 even 2 1600.2.l.f.1201.1 12
16.3 odd 4 400.2.l.f.301.4 yes 12
16.13 even 4 inner 1600.2.l.g.401.6 12
20.3 even 4 400.2.q.f.149.1 12
20.7 even 4 400.2.q.e.149.6 12
20.19 odd 2 400.2.l.g.101.3 yes 12
80.3 even 4 400.2.q.e.349.6 12
80.13 odd 4 1600.2.q.e.849.1 12
80.19 odd 4 400.2.l.g.301.3 yes 12
80.29 even 4 1600.2.l.f.401.1 12
80.67 even 4 400.2.q.f.349.1 12
80.77 odd 4 1600.2.q.f.849.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.l.f.101.4 12 4.3 odd 2
400.2.l.f.301.4 yes 12 16.3 odd 4
400.2.l.g.101.3 yes 12 20.19 odd 2
400.2.l.g.301.3 yes 12 80.19 odd 4
400.2.q.e.149.6 12 20.7 even 4
400.2.q.e.349.6 12 80.3 even 4
400.2.q.f.149.1 12 20.3 even 4
400.2.q.f.349.1 12 80.67 even 4
1600.2.l.f.401.1 12 80.29 even 4
1600.2.l.f.1201.1 12 5.4 even 2
1600.2.l.g.401.6 12 16.13 even 4 inner
1600.2.l.g.1201.6 12 1.1 even 1 trivial
1600.2.q.e.49.1 12 5.2 odd 4
1600.2.q.e.849.1 12 80.13 odd 4
1600.2.q.f.49.6 12 5.3 odd 4
1600.2.q.f.849.6 12 80.77 odd 4