Properties

Label 1600.2.l.f.1201.4
Level $1600$
Weight $2$
Character 1600.1201
Analytic conductor $12.776$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.4767670494822400.1
Defining polynomial: \(x^{12} - 4 x^{11} + 7 x^{10} - 4 x^{9} - 8 x^{8} + 24 x^{7} - 38 x^{6} + 48 x^{5} - 32 x^{4} - 32 x^{3} + 112 x^{2} - 128 x + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 400)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1201.4
Root \(-0.507829 - 1.31989i\) of defining polynomial
Character \(\chi\) \(=\) 1600.1201
Dual form 1600.2.l.f.401.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0623209 + 0.0623209i) q^{3} +0.375877i q^{7} +2.99223i q^{9} +O(q^{10})\) \(q+(-0.0623209 + 0.0623209i) q^{3} +0.375877i q^{7} +2.99223i q^{9} +(-2.36756 - 2.36756i) q^{11} +(1.76442 - 1.76442i) q^{13} +4.64955 q^{17} +(2.34965 - 2.34965i) q^{19} +(-0.0234250 - 0.0234250i) q^{21} +2.07779i q^{23} +(-0.373441 - 0.373441i) q^{27} +(2.55422 - 2.55422i) q^{29} -8.51714 q^{31} +0.295096 q^{33} +(7.62613 + 7.62613i) q^{37} +0.219921i q^{39} +3.77709i q^{41} +(6.21191 + 6.21191i) q^{43} +9.71696 q^{47} +6.85872 q^{49} +(-0.289764 + 0.289764i) q^{51} +(-3.03609 - 3.03609i) q^{53} +0.292864i q^{57} +(8.11663 + 8.11663i) q^{59} +(0.728329 - 0.728329i) q^{61} -1.12471 q^{63} +(-0.969239 + 0.969239i) q^{67} +(-0.129490 - 0.129490i) q^{69} -9.14230i q^{71} +7.56793i q^{73} +(0.889909 - 0.889909i) q^{77} -11.8065 q^{79} -8.93015 q^{81} +(10.6393 - 10.6393i) q^{83} +0.318363i q^{87} +15.7111i q^{89} +(0.663205 + 0.663205i) q^{91} +(0.530796 - 0.530796i) q^{93} +3.86020 q^{97} +(7.08428 - 7.08428i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 2q^{3} + O(q^{10}) \) \( 12q - 2q^{3} + 2q^{11} - 4q^{13} - 8q^{17} + 14q^{19} - 20q^{21} + 10q^{27} + 4q^{31} + 28q^{33} + 8q^{37} - 8q^{47} + 4q^{49} - 10q^{51} - 16q^{53} - 20q^{59} + 4q^{61} + 8q^{63} - 50q^{67} - 8q^{77} - 12q^{79} - 8q^{81} + 2q^{83} - 44q^{93} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0623209 + 0.0623209i −0.0359810 + 0.0359810i −0.724868 0.688887i \(-0.758099\pi\)
0.688887 + 0.724868i \(0.258099\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.375877i 0.142068i 0.997474 + 0.0710340i \(0.0226299\pi\)
−0.997474 + 0.0710340i \(0.977370\pi\)
\(8\) 0 0
\(9\) 2.99223i 0.997411i
\(10\) 0 0
\(11\) −2.36756 2.36756i −0.713845 0.713845i 0.253492 0.967337i \(-0.418421\pi\)
−0.967337 + 0.253492i \(0.918421\pi\)
\(12\) 0 0
\(13\) 1.76442 1.76442i 0.489363 0.489363i −0.418742 0.908105i \(-0.637529\pi\)
0.908105 + 0.418742i \(0.137529\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.64955 1.12768 0.563841 0.825883i \(-0.309323\pi\)
0.563841 + 0.825883i \(0.309323\pi\)
\(18\) 0 0
\(19\) 2.34965 2.34965i 0.539047 0.539047i −0.384202 0.923249i \(-0.625524\pi\)
0.923249 + 0.384202i \(0.125524\pi\)
\(20\) 0 0
\(21\) −0.0234250 0.0234250i −0.00511175 0.00511175i
\(22\) 0 0
\(23\) 2.07779i 0.433250i 0.976255 + 0.216625i \(0.0695048\pi\)
−0.976255 + 0.216625i \(0.930495\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.373441 0.373441i −0.0718688 0.0718688i
\(28\) 0 0
\(29\) 2.55422 2.55422i 0.474307 0.474307i −0.428998 0.903305i \(-0.641133\pi\)
0.903305 + 0.428998i \(0.141133\pi\)
\(30\) 0 0
\(31\) −8.51714 −1.52972 −0.764862 0.644194i \(-0.777193\pi\)
−0.764862 + 0.644194i \(0.777193\pi\)
\(32\) 0 0
\(33\) 0.295096 0.0513697
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.62613 + 7.62613i 1.25373 + 1.25373i 0.954036 + 0.299691i \(0.0968837\pi\)
0.299691 + 0.954036i \(0.403116\pi\)
\(38\) 0 0
\(39\) 0.219921i 0.0352155i
\(40\) 0 0
\(41\) 3.77709i 0.589882i 0.955515 + 0.294941i \(0.0953001\pi\)
−0.955515 + 0.294941i \(0.904700\pi\)
\(42\) 0 0
\(43\) 6.21191 + 6.21191i 0.947307 + 0.947307i 0.998680 0.0513725i \(-0.0163596\pi\)
−0.0513725 + 0.998680i \(0.516360\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.71696 1.41736 0.708682 0.705528i \(-0.249290\pi\)
0.708682 + 0.705528i \(0.249290\pi\)
\(48\) 0 0
\(49\) 6.85872 0.979817
\(50\) 0 0
\(51\) −0.289764 + 0.289764i −0.0405751 + 0.0405751i
\(52\) 0 0
\(53\) −3.03609 3.03609i −0.417040 0.417040i 0.467143 0.884182i \(-0.345283\pi\)
−0.884182 + 0.467143i \(0.845283\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.292864i 0.0387908i
\(58\) 0 0
\(59\) 8.11663 + 8.11663i 1.05670 + 1.05670i 0.998293 + 0.0584019i \(0.0186005\pi\)
0.0584019 + 0.998293i \(0.481400\pi\)
\(60\) 0 0
\(61\) 0.728329 0.728329i 0.0932529 0.0932529i −0.658941 0.752194i \(-0.728995\pi\)
0.752194 + 0.658941i \(0.228995\pi\)
\(62\) 0 0
\(63\) −1.12471 −0.141700
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −0.969239 + 0.969239i −0.118411 + 0.118411i −0.763829 0.645418i \(-0.776683\pi\)
0.645418 + 0.763829i \(0.276683\pi\)
\(68\) 0 0
\(69\) −0.129490 0.129490i −0.0155887 0.0155887i
\(70\) 0 0
\(71\) 9.14230i 1.08499i −0.840058 0.542496i \(-0.817479\pi\)
0.840058 0.542496i \(-0.182521\pi\)
\(72\) 0 0
\(73\) 7.56793i 0.885759i 0.896581 + 0.442879i \(0.146043\pi\)
−0.896581 + 0.442879i \(0.853957\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.889909 0.889909i 0.101415 0.101415i
\(78\) 0 0
\(79\) −11.8065 −1.32834 −0.664169 0.747583i \(-0.731214\pi\)
−0.664169 + 0.747583i \(0.731214\pi\)
\(80\) 0 0
\(81\) −8.93015 −0.992239
\(82\) 0 0
\(83\) 10.6393 10.6393i 1.16782 1.16782i 0.185101 0.982720i \(-0.440739\pi\)
0.982720 0.185101i \(-0.0592611\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.318363i 0.0341320i
\(88\) 0 0
\(89\) 15.7111i 1.66538i 0.553741 + 0.832689i \(0.313200\pi\)
−0.553741 + 0.832689i \(0.686800\pi\)
\(90\) 0 0
\(91\) 0.663205 + 0.663205i 0.0695228 + 0.0695228i
\(92\) 0 0
\(93\) 0.530796 0.530796i 0.0550410 0.0550410i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.86020 0.391943 0.195972 0.980610i \(-0.437214\pi\)
0.195972 + 0.980610i \(0.437214\pi\)
\(98\) 0 0
\(99\) 7.08428 7.08428i 0.711997 0.711997i
\(100\) 0 0
\(101\) −6.87437 6.87437i −0.684026 0.684026i 0.276879 0.960905i \(-0.410700\pi\)
−0.960905 + 0.276879i \(0.910700\pi\)
\(102\) 0 0
\(103\) 1.15407i 0.113714i −0.998382 0.0568571i \(-0.981892\pi\)
0.998382 0.0568571i \(-0.0181079\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.70435 + 5.70435i 0.551460 + 0.551460i 0.926862 0.375402i \(-0.122495\pi\)
−0.375402 + 0.926862i \(0.622495\pi\)
\(108\) 0 0
\(109\) 11.1863 11.1863i 1.07145 1.07145i 0.0742092 0.997243i \(-0.476357\pi\)
0.997243 0.0742092i \(-0.0236433\pi\)
\(110\) 0 0
\(111\) −0.950534 −0.0902207
\(112\) 0 0
\(113\) 4.08163 0.383967 0.191984 0.981398i \(-0.438508\pi\)
0.191984 + 0.981398i \(0.438508\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.27956 + 5.27956i 0.488096 + 0.488096i
\(118\) 0 0
\(119\) 1.74766i 0.160208i
\(120\) 0 0
\(121\) 0.210643i 0.0191493i
\(122\) 0 0
\(123\) −0.235392 0.235392i −0.0212245 0.0212245i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 17.0918 1.51665 0.758326 0.651876i \(-0.226018\pi\)
0.758326 + 0.651876i \(0.226018\pi\)
\(128\) 0 0
\(129\) −0.774263 −0.0681701
\(130\) 0 0
\(131\) 3.56424 3.56424i 0.311409 0.311409i −0.534046 0.845455i \(-0.679329\pi\)
0.845455 + 0.534046i \(0.179329\pi\)
\(132\) 0 0
\(133\) 0.883179 + 0.883179i 0.0765813 + 0.0765813i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.6995i 1.42673i −0.700792 0.713366i \(-0.747170\pi\)
0.700792 0.713366i \(-0.252830\pi\)
\(138\) 0 0
\(139\) 7.56455 + 7.56455i 0.641616 + 0.641616i 0.950953 0.309336i \(-0.100107\pi\)
−0.309336 + 0.950953i \(0.600107\pi\)
\(140\) 0 0
\(141\) −0.605569 + 0.605569i −0.0509982 + 0.0509982i
\(142\) 0 0
\(143\) −8.35474 −0.698658
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.427441 + 0.427441i −0.0352548 + 0.0352548i
\(148\) 0 0
\(149\) −10.2542 10.2542i −0.840056 0.840056i 0.148810 0.988866i \(-0.452456\pi\)
−0.988866 + 0.148810i \(0.952456\pi\)
\(150\) 0 0
\(151\) 19.0430i 1.54970i 0.632147 + 0.774849i \(0.282174\pi\)
−0.632147 + 0.774849i \(0.717826\pi\)
\(152\) 0 0
\(153\) 13.9125i 1.12476i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −10.1335 + 10.1335i −0.808741 + 0.808741i −0.984443 0.175702i \(-0.943780\pi\)
0.175702 + 0.984443i \(0.443780\pi\)
\(158\) 0 0
\(159\) 0.378424 0.0300110
\(160\) 0 0
\(161\) −0.780994 −0.0615509
\(162\) 0 0
\(163\) −7.35501 + 7.35501i −0.576089 + 0.576089i −0.933823 0.357735i \(-0.883549\pi\)
0.357735 + 0.933823i \(0.383549\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.02936i 0.621331i 0.950519 + 0.310665i \(0.100552\pi\)
−0.950519 + 0.310665i \(0.899448\pi\)
\(168\) 0 0
\(169\) 6.77363i 0.521048i
\(170\) 0 0
\(171\) 7.03070 + 7.03070i 0.537651 + 0.537651i
\(172\) 0 0
\(173\) 10.4326 10.4326i 0.793177 0.793177i −0.188832 0.982009i \(-0.560470\pi\)
0.982009 + 0.188832i \(0.0604702\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.01167 −0.0760418
\(178\) 0 0
\(179\) 8.30280 8.30280i 0.620580 0.620580i −0.325099 0.945680i \(-0.605398\pi\)
0.945680 + 0.325099i \(0.105398\pi\)
\(180\) 0 0
\(181\) −10.4772 10.4772i −0.778765 0.778765i 0.200856 0.979621i \(-0.435628\pi\)
−0.979621 + 0.200856i \(0.935628\pi\)
\(182\) 0 0
\(183\) 0.0907802i 0.00671066i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −11.0081 11.0081i −0.804990 0.804990i
\(188\) 0 0
\(189\) 0.140368 0.140368i 0.0102103 0.0102103i
\(190\) 0 0
\(191\) −1.68079 −0.121618 −0.0608089 0.998149i \(-0.519368\pi\)
−0.0608089 + 0.998149i \(0.519368\pi\)
\(192\) 0 0
\(193\) 1.61403 0.116181 0.0580903 0.998311i \(-0.481499\pi\)
0.0580903 + 0.998311i \(0.481499\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.10322 5.10322i −0.363589 0.363589i 0.501543 0.865133i \(-0.332766\pi\)
−0.865133 + 0.501543i \(0.832766\pi\)
\(198\) 0 0
\(199\) 11.1545i 0.790725i 0.918525 + 0.395362i \(0.129381\pi\)
−0.918525 + 0.395362i \(0.870619\pi\)
\(200\) 0 0
\(201\) 0.120808i 0.00852111i
\(202\) 0 0
\(203\) 0.960072 + 0.960072i 0.0673839 + 0.0673839i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.21724 −0.432128
\(208\) 0 0
\(209\) −11.1259 −0.769591
\(210\) 0 0
\(211\) 2.48377 2.48377i 0.170989 0.170989i −0.616425 0.787414i \(-0.711419\pi\)
0.787414 + 0.616425i \(0.211419\pi\)
\(212\) 0 0
\(213\) 0.569756 + 0.569756i 0.0390391 + 0.0390391i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.20140i 0.217325i
\(218\) 0 0
\(219\) −0.471640 0.471640i −0.0318705 0.0318705i
\(220\) 0 0
\(221\) 8.20377 8.20377i 0.551846 0.551846i
\(222\) 0 0
\(223\) −21.1384 −1.41553 −0.707765 0.706448i \(-0.750297\pi\)
−0.707765 + 0.706448i \(0.750297\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.4885 + 14.4885i −0.961634 + 0.961634i −0.999291 0.0376566i \(-0.988011\pi\)
0.0376566 + 0.999291i \(0.488011\pi\)
\(228\) 0 0
\(229\) −10.0956 10.0956i −0.667138 0.667138i 0.289914 0.957053i \(-0.406373\pi\)
−0.957053 + 0.289914i \(0.906373\pi\)
\(230\) 0 0
\(231\) 0.110920i 0.00729799i
\(232\) 0 0
\(233\) 3.44995i 0.226014i −0.993594 0.113007i \(-0.963952\pi\)
0.993594 0.113007i \(-0.0360482\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.735793 0.735793i 0.0477949 0.0477949i
\(238\) 0 0
\(239\) −18.0060 −1.16471 −0.582354 0.812935i \(-0.697868\pi\)
−0.582354 + 0.812935i \(0.697868\pi\)
\(240\) 0 0
\(241\) 12.6235 0.813154 0.406577 0.913617i \(-0.366722\pi\)
0.406577 + 0.913617i \(0.366722\pi\)
\(242\) 0 0
\(243\) 1.67686 1.67686i 0.107571 0.107571i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.29155i 0.527578i
\(248\) 0 0
\(249\) 1.32611i 0.0840386i
\(250\) 0 0
\(251\) 9.17919 + 9.17919i 0.579386 + 0.579386i 0.934734 0.355348i \(-0.115638\pi\)
−0.355348 + 0.934734i \(0.615638\pi\)
\(252\) 0 0
\(253\) 4.91929 4.91929i 0.309273 0.309273i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.2897 −1.01612 −0.508061 0.861321i \(-0.669637\pi\)
−0.508061 + 0.861321i \(0.669637\pi\)
\(258\) 0 0
\(259\) −2.86648 + 2.86648i −0.178115 + 0.178115i
\(260\) 0 0
\(261\) 7.64282 + 7.64282i 0.473079 + 0.473079i
\(262\) 0 0
\(263\) 10.4898i 0.646831i −0.946257 0.323416i \(-0.895169\pi\)
0.946257 0.323416i \(-0.104831\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.979132 0.979132i −0.0599219 0.0599219i
\(268\) 0 0
\(269\) −8.46636 + 8.46636i −0.516203 + 0.516203i −0.916420 0.400217i \(-0.868935\pi\)
0.400217 + 0.916420i \(0.368935\pi\)
\(270\) 0 0
\(271\) 8.92117 0.541923 0.270961 0.962590i \(-0.412658\pi\)
0.270961 + 0.962590i \(0.412658\pi\)
\(272\) 0 0
\(273\) −0.0826631 −0.00500300
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9.36430 9.36430i −0.562646 0.562646i 0.367412 0.930058i \(-0.380244\pi\)
−0.930058 + 0.367412i \(0.880244\pi\)
\(278\) 0 0
\(279\) 25.4853i 1.52576i
\(280\) 0 0
\(281\) 3.12921i 0.186673i 0.995635 + 0.0933365i \(0.0297532\pi\)
−0.995635 + 0.0933365i \(0.970247\pi\)
\(282\) 0 0
\(283\) −2.07308 2.07308i −0.123232 0.123232i 0.642801 0.766033i \(-0.277772\pi\)
−0.766033 + 0.642801i \(0.777772\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.41972 −0.0838035
\(288\) 0 0
\(289\) 4.61834 0.271667
\(290\) 0 0
\(291\) −0.240571 + 0.240571i −0.0141025 + 0.0141025i
\(292\) 0 0
\(293\) −12.3528 12.3528i −0.721659 0.721659i 0.247284 0.968943i \(-0.420462\pi\)
−0.968943 + 0.247284i \(0.920462\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.76829i 0.102606i
\(298\) 0 0
\(299\) 3.66610 + 3.66610i 0.212016 + 0.212016i
\(300\) 0 0
\(301\) −2.33491 + 2.33491i −0.134582 + 0.134582i
\(302\) 0 0
\(303\) 0.856834 0.0492238
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 10.5938 10.5938i 0.604619 0.604619i −0.336916 0.941535i \(-0.609384\pi\)
0.941535 + 0.336916i \(0.109384\pi\)
\(308\) 0 0
\(309\) 0.0719229 + 0.0719229i 0.00409155 + 0.00409155i
\(310\) 0 0
\(311\) 19.4153i 1.10094i −0.834854 0.550471i \(-0.814448\pi\)
0.834854 0.550471i \(-0.185552\pi\)
\(312\) 0 0
\(313\) 2.56569i 0.145022i −0.997368 0.0725108i \(-0.976899\pi\)
0.997368 0.0725108i \(-0.0231012\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.32418 7.32418i 0.411367 0.411367i −0.470848 0.882215i \(-0.656052\pi\)
0.882215 + 0.470848i \(0.156052\pi\)
\(318\) 0 0
\(319\) −12.0945 −0.677163
\(320\) 0 0
\(321\) −0.711000 −0.0396842
\(322\) 0 0
\(323\) 10.9248 10.9248i 0.607873 0.607873i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.39428i 0.0771038i
\(328\) 0 0
\(329\) 3.65238i 0.201362i
\(330\) 0 0
\(331\) −4.17652 4.17652i −0.229562 0.229562i 0.582948 0.812510i \(-0.301899\pi\)
−0.812510 + 0.582948i \(0.801899\pi\)
\(332\) 0 0
\(333\) −22.8191 + 22.8191i −1.25048 + 1.25048i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −12.4540 −0.678410 −0.339205 0.940712i \(-0.610158\pi\)
−0.339205 + 0.940712i \(0.610158\pi\)
\(338\) 0 0
\(339\) −0.254371 + 0.254371i −0.0138155 + 0.0138155i
\(340\) 0 0
\(341\) 20.1648 + 20.1648i 1.09199 + 1.09199i
\(342\) 0 0
\(343\) 5.20917i 0.281269i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.5107 17.5107i −0.940024 0.940024i 0.0582766 0.998300i \(-0.481439\pi\)
−0.998300 + 0.0582766i \(0.981439\pi\)
\(348\) 0 0
\(349\) 8.42042 8.42042i 0.450735 0.450735i −0.444863 0.895598i \(-0.646748\pi\)
0.895598 + 0.444863i \(0.146748\pi\)
\(350\) 0 0
\(351\) −1.31782 −0.0703398
\(352\) 0 0
\(353\) −9.71293 −0.516967 −0.258484 0.966016i \(-0.583223\pi\)
−0.258484 + 0.966016i \(0.583223\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.108916 0.108916i −0.00576443 0.00576443i
\(358\) 0 0
\(359\) 6.77551i 0.357598i 0.983886 + 0.178799i \(0.0572212\pi\)
−0.983886 + 0.178799i \(0.942779\pi\)
\(360\) 0 0
\(361\) 7.95830i 0.418858i
\(362\) 0 0
\(363\) −0.0131274 0.0131274i −0.000689012 0.000689012i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −34.4591 −1.79875 −0.899376 0.437176i \(-0.855979\pi\)
−0.899376 + 0.437176i \(0.855979\pi\)
\(368\) 0 0
\(369\) −11.3019 −0.588355
\(370\) 0 0
\(371\) 1.14120 1.14120i 0.0592480 0.0592480i
\(372\) 0 0
\(373\) −3.55187 3.55187i −0.183909 0.183909i 0.609148 0.793057i \(-0.291512\pi\)
−0.793057 + 0.609148i \(0.791512\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.01345i 0.464216i
\(378\) 0 0
\(379\) −26.4464 26.4464i −1.35846 1.35846i −0.875817 0.482644i \(-0.839677\pi\)
−0.482644 0.875817i \(-0.660323\pi\)
\(380\) 0 0
\(381\) −1.06518 + 1.06518i −0.0545706 + 0.0545706i
\(382\) 0 0
\(383\) 30.8614 1.57695 0.788473 0.615069i \(-0.210872\pi\)
0.788473 + 0.615069i \(0.210872\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −18.5875 + 18.5875i −0.944854 + 0.944854i
\(388\) 0 0
\(389\) 9.50959 + 9.50959i 0.482155 + 0.482155i 0.905819 0.423664i \(-0.139256\pi\)
−0.423664 + 0.905819i \(0.639256\pi\)
\(390\) 0 0
\(391\) 9.66080i 0.488568i
\(392\) 0 0
\(393\) 0.444253i 0.0224096i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −24.8540 + 24.8540i −1.24739 + 1.24739i −0.290518 + 0.956870i \(0.593828\pi\)
−0.956870 + 0.290518i \(0.906172\pi\)
\(398\) 0 0
\(399\) −0.110081 −0.00551094
\(400\) 0 0
\(401\) 4.69303 0.234359 0.117179 0.993111i \(-0.462615\pi\)
0.117179 + 0.993111i \(0.462615\pi\)
\(402\) 0 0
\(403\) −15.0278 + 15.0278i −0.748590 + 0.748590i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 36.1106i 1.78993i
\(408\) 0 0
\(409\) 28.2641i 1.39757i −0.715331 0.698786i \(-0.753724\pi\)
0.715331 0.698786i \(-0.246276\pi\)
\(410\) 0 0
\(411\) 1.04073 + 1.04073i 0.0513352 + 0.0513352i
\(412\) 0 0
\(413\) −3.05085 + 3.05085i −0.150123 + 0.150123i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.942858 −0.0461720
\(418\) 0 0
\(419\) −23.0355 + 23.0355i −1.12536 + 1.12536i −0.134433 + 0.990923i \(0.542921\pi\)
−0.990923 + 0.134433i \(0.957079\pi\)
\(420\) 0 0
\(421\) 5.40760 + 5.40760i 0.263550 + 0.263550i 0.826495 0.562945i \(-0.190332\pi\)
−0.562945 + 0.826495i \(0.690332\pi\)
\(422\) 0 0
\(423\) 29.0754i 1.41369i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.273762 + 0.273762i 0.0132483 + 0.0132483i
\(428\) 0 0
\(429\) 0.520675 0.520675i 0.0251384 0.0251384i
\(430\) 0 0
\(431\) 12.6839 0.610961 0.305481 0.952198i \(-0.401183\pi\)
0.305481 + 0.952198i \(0.401183\pi\)
\(432\) 0 0
\(433\) −23.8511 −1.14621 −0.573104 0.819482i \(-0.694261\pi\)
−0.573104 + 0.819482i \(0.694261\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.88208 + 4.88208i 0.233542 + 0.233542i
\(438\) 0 0
\(439\) 4.65878i 0.222352i 0.993801 + 0.111176i \(0.0354617\pi\)
−0.993801 + 0.111176i \(0.964538\pi\)
\(440\) 0 0
\(441\) 20.5229i 0.977280i
\(442\) 0 0
\(443\) −8.74048 8.74048i −0.415273 0.415273i 0.468298 0.883571i \(-0.344867\pi\)
−0.883571 + 0.468298i \(0.844867\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.27810 0.0604520
\(448\) 0 0
\(449\) −7.28525 −0.343812 −0.171906 0.985113i \(-0.554993\pi\)
−0.171906 + 0.985113i \(0.554993\pi\)
\(450\) 0 0
\(451\) 8.94247 8.94247i 0.421085 0.421085i
\(452\) 0 0
\(453\) −1.18678 1.18678i −0.0557596 0.0557596i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.2194i 1.17971i 0.807508 + 0.589857i \(0.200816\pi\)
−0.807508 + 0.589857i \(0.799184\pi\)
\(458\) 0 0
\(459\) −1.73633 1.73633i −0.0810451 0.0810451i
\(460\) 0 0
\(461\) 13.6698 13.6698i 0.636667 0.636667i −0.313064 0.949732i \(-0.601356\pi\)
0.949732 + 0.313064i \(0.101356\pi\)
\(462\) 0 0
\(463\) −2.77045 −0.128754 −0.0643768 0.997926i \(-0.520506\pi\)
−0.0643768 + 0.997926i \(0.520506\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.9587 17.9587i 0.831031 0.831031i −0.156627 0.987658i \(-0.550062\pi\)
0.987658 + 0.156627i \(0.0500621\pi\)
\(468\) 0 0
\(469\) −0.364314 0.364314i −0.0168225 0.0168225i
\(470\) 0 0
\(471\) 1.26306i 0.0581986i
\(472\) 0 0
\(473\) 29.4141i 1.35246i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 9.08470 9.08470i 0.415960 0.415960i
\(478\) 0 0
\(479\) 22.4540 1.02595 0.512975 0.858403i \(-0.328543\pi\)
0.512975 + 0.858403i \(0.328543\pi\)
\(480\) 0 0
\(481\) 26.9114 1.22705
\(482\) 0 0
\(483\) 0.0486722 0.0486722i 0.00221466 0.00221466i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 27.7615i 1.25799i 0.777408 + 0.628997i \(0.216534\pi\)
−0.777408 + 0.628997i \(0.783466\pi\)
\(488\) 0 0
\(489\) 0.916741i 0.0414565i
\(490\) 0 0
\(491\) −16.8993 16.8993i −0.762656 0.762656i 0.214146 0.976802i \(-0.431303\pi\)
−0.976802 + 0.214146i \(0.931303\pi\)
\(492\) 0 0
\(493\) 11.8760 11.8760i 0.534867 0.534867i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.43638 0.154143
\(498\) 0 0
\(499\) 1.81950 1.81950i 0.0814520 0.0814520i −0.665207 0.746659i \(-0.731657\pi\)
0.746659 + 0.665207i \(0.231657\pi\)
\(500\) 0 0
\(501\) −0.500397 0.500397i −0.0223561 0.0223561i
\(502\) 0 0
\(503\) 42.2076i 1.88195i −0.338482 0.940973i \(-0.609913\pi\)
0.338482 0.940973i \(-0.390087\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.422139 0.422139i −0.0187478 0.0187478i
\(508\) 0 0
\(509\) −21.9831 + 21.9831i −0.974382 + 0.974382i −0.999680 0.0252980i \(-0.991947\pi\)
0.0252980 + 0.999680i \(0.491947\pi\)
\(510\) 0 0
\(511\) −2.84461 −0.125838
\(512\) 0 0
\(513\) −1.75491 −0.0774812
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −23.0054 23.0054i −1.01178 1.01178i
\(518\) 0 0
\(519\) 1.30034i 0.0570786i
\(520\) 0 0
\(521\) 28.1418i 1.23291i −0.787388 0.616457i \(-0.788567\pi\)
0.787388 0.616457i \(-0.211433\pi\)
\(522\) 0 0
\(523\) 9.58093 + 9.58093i 0.418945 + 0.418945i 0.884840 0.465895i \(-0.154268\pi\)
−0.465895 + 0.884840i \(0.654268\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −39.6009 −1.72504
\(528\) 0 0
\(529\) 18.6828 0.812295
\(530\) 0 0
\(531\) −24.2868 + 24.2868i −1.05396 + 1.05396i
\(532\) 0 0
\(533\) 6.66438 + 6.66438i 0.288666 + 0.288666i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.03488i 0.0446582i
\(538\) 0 0
\(539\) −16.2384 16.2384i −0.699437 0.699437i
\(540\) 0 0
\(541\) −26.9128 + 26.9128i −1.15707 + 1.15707i −0.171972 + 0.985102i \(0.555014\pi\)
−0.985102 + 0.171972i \(0.944986\pi\)
\(542\) 0 0
\(543\) 1.30590 0.0560415
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 10.6627 10.6627i 0.455902 0.455902i −0.441406 0.897308i \(-0.645520\pi\)
0.897308 + 0.441406i \(0.145520\pi\)
\(548\) 0 0
\(549\) 2.17933 + 2.17933i 0.0930115 + 0.0930115i
\(550\) 0 0
\(551\) 12.0030i 0.511347i
\(552\) 0 0
\(553\) 4.43780i 0.188714i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.8060 22.8060i 0.966320 0.966320i −0.0331307 0.999451i \(-0.510548\pi\)
0.999451 + 0.0331307i \(0.0105477\pi\)
\(558\) 0 0
\(559\) 21.9209 0.927153
\(560\) 0 0
\(561\) 1.37207 0.0579287
\(562\) 0 0
\(563\) 0.472513 0.472513i 0.0199140 0.0199140i −0.697080 0.716994i \(-0.745518\pi\)
0.716994 + 0.697080i \(0.245518\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.35664i 0.140965i
\(568\) 0 0
\(569\) 3.14792i 0.131967i −0.997821 0.0659837i \(-0.978981\pi\)
0.997821 0.0659837i \(-0.0210185\pi\)
\(570\) 0 0
\(571\) −5.78162 5.78162i −0.241953 0.241953i 0.575704 0.817658i \(-0.304728\pi\)
−0.817658 + 0.575704i \(0.804728\pi\)
\(572\) 0 0
\(573\) 0.104748 0.104748i 0.00437593 0.00437593i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 29.0110 1.20774 0.603872 0.797081i \(-0.293624\pi\)
0.603872 + 0.797081i \(0.293624\pi\)
\(578\) 0 0
\(579\) −0.100588 + 0.100588i −0.00418029 + 0.00418029i
\(580\) 0 0
\(581\) 3.99908 + 3.99908i 0.165910 + 0.165910i
\(582\) 0 0
\(583\) 14.3762i 0.595403i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.4099 + 20.4099i 0.842408 + 0.842408i 0.989172 0.146764i \(-0.0468857\pi\)
−0.146764 + 0.989172i \(0.546886\pi\)
\(588\) 0 0
\(589\) −20.0123 + 20.0123i −0.824592 + 0.824592i
\(590\) 0 0
\(591\) 0.636074 0.0261646
\(592\) 0 0
\(593\) 28.9098 1.18718 0.593592 0.804766i \(-0.297709\pi\)
0.593592 + 0.804766i \(0.297709\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.695161 0.695161i −0.0284511 0.0284511i
\(598\) 0 0
\(599\) 11.7893i 0.481696i −0.970563 0.240848i \(-0.922574\pi\)
0.970563 0.240848i \(-0.0774256\pi\)
\(600\) 0 0
\(601\) 17.7398i 0.723621i −0.932252 0.361810i \(-0.882159\pi\)
0.932252 0.361810i \(-0.117841\pi\)
\(602\) 0 0
\(603\) −2.90019 2.90019i −0.118105 0.118105i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 25.8393 1.04878 0.524392 0.851477i \(-0.324293\pi\)
0.524392 + 0.851477i \(0.324293\pi\)
\(608\) 0 0
\(609\) −0.119665 −0.00484907
\(610\) 0 0
\(611\) 17.1448 17.1448i 0.693605 0.693605i
\(612\) 0 0
\(613\) 31.5411 + 31.5411i 1.27393 + 1.27393i 0.944006 + 0.329929i \(0.107025\pi\)
0.329929 + 0.944006i \(0.392975\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.0637i 0.606440i 0.952921 + 0.303220i \(0.0980618\pi\)
−0.952921 + 0.303220i \(0.901938\pi\)
\(618\) 0 0
\(619\) 10.4975 + 10.4975i 0.421929 + 0.421929i 0.885868 0.463938i \(-0.153564\pi\)
−0.463938 + 0.885868i \(0.653564\pi\)
\(620\) 0 0
\(621\) 0.775933 0.775933i 0.0311371 0.0311371i
\(622\) 0 0
\(623\) −5.90545 −0.236597
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.693373 0.693373i 0.0276906 0.0276906i
\(628\) 0 0
\(629\) 35.4581 + 35.4581i 1.41381 + 1.41381i
\(630\) 0 0
\(631\) 43.6349i 1.73708i 0.495621 + 0.868539i \(0.334940\pi\)
−0.495621 + 0.868539i \(0.665060\pi\)
\(632\) 0 0
\(633\) 0.309581i 0.0123047i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 12.1017 12.1017i 0.479486 0.479486i
\(638\) 0 0
\(639\) 27.3559 1.08218
\(640\) 0 0
\(641\) −34.2710 −1.35362 −0.676812 0.736156i \(-0.736639\pi\)
−0.676812 + 0.736156i \(0.736639\pi\)
\(642\) 0 0
\(643\) −30.1937 + 30.1937i −1.19072 + 1.19072i −0.213857 + 0.976865i \(0.568603\pi\)
−0.976865 + 0.213857i \(0.931397\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.7474i 0.619096i 0.950884 + 0.309548i \(0.100178\pi\)
−0.950884 + 0.309548i \(0.899822\pi\)
\(648\) 0 0
\(649\) 38.4331i 1.50863i
\(650\) 0 0
\(651\) 0.199514 + 0.199514i 0.00781956 + 0.00781956i
\(652\) 0 0
\(653\) −5.80619 + 5.80619i −0.227214 + 0.227214i −0.811528 0.584314i \(-0.801364\pi\)
0.584314 + 0.811528i \(0.301364\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −22.6450 −0.883465
\(658\) 0 0
\(659\) −1.76782 + 1.76782i −0.0688647 + 0.0688647i −0.740700 0.671836i \(-0.765506\pi\)
0.671836 + 0.740700i \(0.265506\pi\)
\(660\) 0 0
\(661\) −12.4824 12.4824i −0.485509 0.485509i 0.421377 0.906886i \(-0.361547\pi\)
−0.906886 + 0.421377i \(0.861547\pi\)
\(662\) 0 0
\(663\) 1.02253i 0.0397119i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.30714 + 5.30714i 0.205493 + 0.205493i
\(668\) 0 0
\(669\) 1.31736 1.31736i 0.0509322 0.0509322i
\(670\) 0 0
\(671\) −3.44872 −0.133136
\(672\) 0 0
\(673\) 14.1113 0.543950 0.271975 0.962304i \(-0.412323\pi\)
0.271975 + 0.962304i \(0.412323\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.31191 + 8.31191i 0.319453 + 0.319453i 0.848557 0.529104i \(-0.177472\pi\)
−0.529104 + 0.848557i \(0.677472\pi\)
\(678\) 0 0
\(679\) 1.45096i 0.0556827i
\(680\) 0 0
\(681\) 1.80587i 0.0692011i
\(682\) 0 0
\(683\) −30.0811 30.0811i −1.15102 1.15102i −0.986348 0.164673i \(-0.947343\pi\)
−0.164673 0.986348i \(-0.552657\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.25834 0.0480086
\(688\) 0 0
\(689\) −10.7139 −0.408167
\(690\) 0 0
\(691\) −24.0212 + 24.0212i −0.913810 + 0.913810i −0.996570 0.0827600i \(-0.973627\pi\)
0.0827600 + 0.996570i \(0.473627\pi\)
\(692\) 0 0
\(693\) 2.66282 + 2.66282i 0.101152 + 0.101152i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 17.5618i 0.665200i
\(698\) 0 0
\(699\) 0.215004 + 0.215004i 0.00813219 + 0.00813219i
\(700\) 0 0
\(701\) 10.0971 10.0971i 0.381363 0.381363i −0.490230 0.871593i \(-0.663087\pi\)
0.871593 + 0.490230i \(0.163087\pi\)
\(702\) 0 0
\(703\) 35.8375 1.35164
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.58392 2.58392i 0.0971782 0.0971782i
\(708\) 0 0
\(709\) −4.67310 4.67310i −0.175502 0.175502i 0.613890 0.789392i \(-0.289604\pi\)
−0.789392 + 0.613890i \(0.789604\pi\)
\(710\) 0 0
\(711\) 35.3279i 1.32490i
\(712\) 0 0
\(713\) 17.6968i 0.662752i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.12215 1.12215i 0.0419074 0.0419074i
\(718\) 0 0
\(719\) 23.5339 0.877667 0.438833 0.898568i \(-0.355392\pi\)
0.438833 + 0.898568i \(0.355392\pi\)
\(720\) 0 0
\(721\) 0.433789 0.0161552
\(722\) 0 0
\(723\) −0.786710 + 0.786710i −0.0292581 + 0.0292581i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16.6692i 0.618226i 0.951025 + 0.309113i \(0.100032\pi\)
−0.951025 + 0.309113i \(0.899968\pi\)
\(728\) 0 0
\(729\) 26.5814i 0.984498i
\(730\) 0 0
\(731\) 28.8826 + 28.8826i 1.06826 + 1.06826i
\(732\) 0 0
\(733\) −27.4684 + 27.4684i −1.01457 + 1.01457i −0.0146760 + 0.999892i \(0.504672\pi\)
−0.999892 + 0.0146760i \(0.995328\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.58945 0.169055
\(738\) 0 0
\(739\) −22.7939 + 22.7939i −0.838486 + 0.838486i −0.988660 0.150174i \(-0.952017\pi\)
0.150174 + 0.988660i \(0.452017\pi\)
\(740\) 0 0
\(741\) 0.516736 + 0.516736i 0.0189828 + 0.0189828i
\(742\) 0 0
\(743\) 16.4964i 0.605196i 0.953118 + 0.302598i \(0.0978539\pi\)
−0.953118 + 0.302598i \(0.902146\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 31.8354 + 31.8354i 1.16480 + 1.16480i
\(748\) 0 0
\(749\) −2.14413 + 2.14413i −0.0783449 + 0.0783449i
\(750\) 0 0
\(751\) 21.6997 0.791833 0.395917 0.918286i \(-0.370427\pi\)
0.395917 + 0.918286i \(0.370427\pi\)
\(752\) 0 0
\(753\) −1.14411 −0.0416937
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.73819 + 1.73819i 0.0631757 + 0.0631757i 0.737989 0.674813i \(-0.235776\pi\)
−0.674813 + 0.737989i \(0.735776\pi\)
\(758\) 0 0
\(759\) 0.613149i 0.0222559i
\(760\) 0 0
\(761\) 46.5311i 1.68675i −0.537323 0.843376i \(-0.680565\pi\)
0.537323 0.843376i \(-0.319435\pi\)
\(762\) 0 0
\(763\) 4.20467 + 4.20467i 0.152219 + 0.152219i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28.6423 1.03421
\(768\) 0 0
\(769\) 15.4731 0.557976 0.278988 0.960295i \(-0.410001\pi\)
0.278988 + 0.960295i \(0.410001\pi\)
\(770\) 0 0
\(771\) 1.01519 1.01519i 0.0365610 0.0365610i
\(772\) 0 0
\(773\) −5.69848 5.69848i −0.204960 0.204960i 0.597161 0.802121i \(-0.296295\pi\)
−0.802121 + 0.597161i \(0.796295\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.357284i 0.0128175i
\(778\) 0 0
\(779\) 8.87484 + 8.87484i 0.317974 + 0.317974i
\(780\) 0 0
\(781\) −21.6449 + 21.6449i −0.774516 + 0.774516i
\(782\) 0 0
\(783\) −1.90770 −0.0681757
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 18.1351 18.1351i 0.646448 0.646448i −0.305685 0.952133i \(-0.598885\pi\)
0.952133 + 0.305685i \(0.0988855\pi\)
\(788\) 0 0
\(789\) 0.653736 + 0.653736i 0.0232736 + 0.0232736i
\(790\) 0 0
\(791\) 1.53419i 0.0545495i
\(792\) 0 0
\(793\) 2.57016i 0.0912690i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.51575 + 4.51575i −0.159956 + 0.159956i −0.782547 0.622591i \(-0.786080\pi\)
0.622591 + 0.782547i \(0.286080\pi\)
\(798\) 0 0
\(799\) 45.1795 1.59834
\(800\) 0 0
\(801\) −47.0114 −1.66107
\(802\) 0 0
\(803\) 17.9175 17.9175i