Properties

Label 1600.2.l.b.1201.1
Level $1600$
Weight $2$
Character 1600.1201
Analytic conductor $12.776$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(401,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.401");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1201.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1600.1201
Dual form 1600.2.l.b.401.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{3} +1.00000i q^{9} +O(q^{10})\) \(q+(-1.00000 + 1.00000i) q^{3} +1.00000i q^{9} +(3.00000 + 3.00000i) q^{11} +(3.00000 - 3.00000i) q^{13} +4.00000 q^{17} +(-1.00000 + 1.00000i) q^{19} -8.00000i q^{23} +(-4.00000 - 4.00000i) q^{27} +(-3.00000 + 3.00000i) q^{29} -6.00000 q^{33} +(3.00000 + 3.00000i) q^{37} +6.00000i q^{39} +(3.00000 + 3.00000i) q^{43} -2.00000 q^{47} +7.00000 q^{49} +(-4.00000 + 4.00000i) q^{51} +(9.00000 + 9.00000i) q^{53} -2.00000i q^{57} +(9.00000 + 9.00000i) q^{59} +(-5.00000 + 5.00000i) q^{61} +(-3.00000 + 3.00000i) q^{67} +(8.00000 + 8.00000i) q^{69} -6.00000i q^{71} -6.00000i q^{73} +8.00000 q^{79} +5.00000 q^{81} +(-9.00000 + 9.00000i) q^{83} -6.00000i q^{87} +12.0000i q^{89} -12.0000 q^{97} +(-3.00000 + 3.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 6 q^{11} + 6 q^{13} + 8 q^{17} - 2 q^{19} - 8 q^{27} - 6 q^{29} - 12 q^{33} + 6 q^{37} + 6 q^{43} - 4 q^{47} + 14 q^{49} - 8 q^{51} + 18 q^{53} + 18 q^{59} - 10 q^{61} - 6 q^{67} + 16 q^{69} + 16 q^{79} + 10 q^{81} - 18 q^{83} - 24 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.00000i −0.577350 + 0.577350i −0.934172 0.356822i \(-0.883860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 3.00000 + 3.00000i 0.904534 + 0.904534i 0.995824 0.0912903i \(-0.0290991\pi\)
−0.0912903 + 0.995824i \(0.529099\pi\)
\(12\) 0 0
\(13\) 3.00000 3.00000i 0.832050 0.832050i −0.155747 0.987797i \(-0.549778\pi\)
0.987797 + 0.155747i \(0.0497784\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −1.00000 + 1.00000i −0.229416 + 0.229416i −0.812449 0.583033i \(-0.801866\pi\)
0.583033 + 0.812449i \(0.301866\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.00000i 1.66812i −0.551677 0.834058i \(-0.686012\pi\)
0.551677 0.834058i \(-0.313988\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 0 0
\(29\) −3.00000 + 3.00000i −0.557086 + 0.557086i −0.928477 0.371391i \(-0.878881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 + 3.00000i 0.493197 + 0.493197i 0.909312 0.416115i \(-0.136609\pi\)
−0.416115 + 0.909312i \(0.636609\pi\)
\(38\) 0 0
\(39\) 6.00000i 0.960769i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 3.00000 + 3.00000i 0.457496 + 0.457496i 0.897833 0.440337i \(-0.145141\pi\)
−0.440337 + 0.897833i \(0.645141\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) −4.00000 + 4.00000i −0.560112 + 0.560112i
\(52\) 0 0
\(53\) 9.00000 + 9.00000i 1.23625 + 1.23625i 0.961524 + 0.274721i \(0.0885855\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.00000i 0.264906i
\(58\) 0 0
\(59\) 9.00000 + 9.00000i 1.17170 + 1.17170i 0.981804 + 0.189896i \(0.0608151\pi\)
0.189896 + 0.981804i \(0.439185\pi\)
\(60\) 0 0
\(61\) −5.00000 + 5.00000i −0.640184 + 0.640184i −0.950601 0.310416i \(-0.899532\pi\)
0.310416 + 0.950601i \(0.399532\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.00000 + 3.00000i −0.366508 + 0.366508i −0.866202 0.499694i \(-0.833446\pi\)
0.499694 + 0.866202i \(0.333446\pi\)
\(68\) 0 0
\(69\) 8.00000 + 8.00000i 0.963087 + 0.963087i
\(70\) 0 0
\(71\) 6.00000i 0.712069i −0.934473 0.356034i \(-0.884129\pi\)
0.934473 0.356034i \(-0.115871\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) −9.00000 + 9.00000i −0.987878 + 0.987878i −0.999927 0.0120491i \(-0.996165\pi\)
0.0120491 + 0.999927i \(0.496165\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) 12.0000i 1.27200i 0.771690 + 0.635999i \(0.219412\pi\)
−0.771690 + 0.635999i \(0.780588\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 0 0
\(99\) −3.00000 + 3.00000i −0.301511 + 0.301511i
\(100\) 0 0
\(101\) 3.00000 + 3.00000i 0.298511 + 0.298511i 0.840431 0.541919i \(-0.182302\pi\)
−0.541919 + 0.840431i \(0.682302\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000 + 9.00000i 0.870063 + 0.870063i 0.992479 0.122416i \(-0.0390642\pi\)
−0.122416 + 0.992479i \(0.539064\pi\)
\(108\) 0 0
\(109\) 1.00000 1.00000i 0.0957826 0.0957826i −0.657592 0.753374i \(-0.728425\pi\)
0.753374 + 0.657592i \(0.228425\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.00000 + 3.00000i 0.277350 + 0.277350i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) 9.00000 9.00000i 0.786334 0.786334i −0.194557 0.980891i \(-0.562327\pi\)
0.980891 + 0.194557i \(0.0623271\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000i 0.170872i 0.996344 + 0.0854358i \(0.0272282\pi\)
−0.996344 + 0.0854358i \(0.972772\pi\)
\(138\) 0 0
\(139\) −7.00000 7.00000i −0.593732 0.593732i 0.344905 0.938638i \(-0.387911\pi\)
−0.938638 + 0.344905i \(0.887911\pi\)
\(140\) 0 0
\(141\) 2.00000 2.00000i 0.168430 0.168430i
\(142\) 0 0
\(143\) 18.0000 1.50524
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −7.00000 + 7.00000i −0.577350 + 0.577350i
\(148\) 0 0
\(149\) −3.00000 3.00000i −0.245770 0.245770i 0.573462 0.819232i \(-0.305600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) 18.0000i 1.46482i 0.680864 + 0.732410i \(0.261604\pi\)
−0.680864 + 0.732410i \(0.738396\pi\)
\(152\) 0 0
\(153\) 4.00000i 0.323381i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 9.00000 9.00000i 0.718278 0.718278i −0.249974 0.968252i \(-0.580422\pi\)
0.968252 + 0.249974i \(0.0804222\pi\)
\(158\) 0 0
\(159\) −18.0000 −1.42749
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.00000 + 9.00000i −0.704934 + 0.704934i −0.965465 0.260531i \(-0.916102\pi\)
0.260531 + 0.965465i \(0.416102\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000i 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) −1.00000 1.00000i −0.0764719 0.0764719i
\(172\) 0 0
\(173\) −9.00000 + 9.00000i −0.684257 + 0.684257i −0.960957 0.276699i \(-0.910759\pi\)
0.276699 + 0.960957i \(0.410759\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −18.0000 −1.35296
\(178\) 0 0
\(179\) 3.00000 3.00000i 0.224231 0.224231i −0.586047 0.810277i \(-0.699317\pi\)
0.810277 + 0.586047i \(0.199317\pi\)
\(180\) 0 0
\(181\) −1.00000 1.00000i −0.0743294 0.0743294i 0.668965 0.743294i \(-0.266738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 10.0000i 0.739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.0000 + 12.0000i 0.877527 + 0.877527i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) −12.0000 −0.863779 −0.431889 0.901927i \(-0.642153\pi\)
−0.431889 + 0.901927i \(0.642153\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.00000 5.00000i −0.356235 0.356235i 0.506188 0.862423i \(-0.331054\pi\)
−0.862423 + 0.506188i \(0.831054\pi\)
\(198\) 0 0
\(199\) 2.00000i 0.141776i −0.997484 0.0708881i \(-0.977417\pi\)
0.997484 0.0708881i \(-0.0225833\pi\)
\(200\) 0 0
\(201\) 6.00000i 0.423207i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.00000 0.556038
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) −11.0000 + 11.0000i −0.757271 + 0.757271i −0.975825 0.218554i \(-0.929866\pi\)
0.218554 + 0.975825i \(0.429866\pi\)
\(212\) 0 0
\(213\) 6.00000 + 6.00000i 0.411113 + 0.411113i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.00000 + 6.00000i 0.405442 + 0.405442i
\(220\) 0 0
\(221\) 12.0000 12.0000i 0.807207 0.807207i
\(222\) 0 0
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.00000 9.00000i 0.597351 0.597351i −0.342256 0.939607i \(-0.611191\pi\)
0.939607 + 0.342256i \(0.111191\pi\)
\(228\) 0 0
\(229\) −7.00000 7.00000i −0.462573 0.462573i 0.436925 0.899498i \(-0.356068\pi\)
−0.899498 + 0.436925i \(0.856068\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 22.0000i 1.44127i −0.693316 0.720634i \(-0.743851\pi\)
0.693316 0.720634i \(-0.256149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −8.00000 + 8.00000i −0.519656 + 0.519656i
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) 7.00000 7.00000i 0.449050 0.449050i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.00000i 0.381771i
\(248\) 0 0
\(249\) 18.0000i 1.14070i
\(250\) 0 0
\(251\) −9.00000 9.00000i −0.568075 0.568075i 0.363514 0.931589i \(-0.381577\pi\)
−0.931589 + 0.363514i \(0.881577\pi\)
\(252\) 0 0
\(253\) 24.0000 24.0000i 1.50887 1.50887i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.00000 0.499026 0.249513 0.968371i \(-0.419729\pi\)
0.249513 + 0.968371i \(0.419729\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.00000 3.00000i −0.185695 0.185695i
\(262\) 0 0
\(263\) 16.0000i 0.986602i −0.869859 0.493301i \(-0.835790\pi\)
0.869859 0.493301i \(-0.164210\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −12.0000 12.0000i −0.734388 0.734388i
\(268\) 0 0
\(269\) 9.00000 9.00000i 0.548740 0.548740i −0.377337 0.926076i \(-0.623160\pi\)
0.926076 + 0.377337i \(0.123160\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.00000 + 3.00000i 0.180253 + 0.180253i 0.791466 0.611213i \(-0.209318\pi\)
−0.611213 + 0.791466i \(0.709318\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.0000i 0.715860i −0.933748 0.357930i \(-0.883483\pi\)
0.933748 0.357930i \(-0.116517\pi\)
\(282\) 0 0
\(283\) 15.0000 + 15.0000i 0.891657 + 0.891657i 0.994679 0.103022i \(-0.0328511\pi\)
−0.103022 + 0.994679i \(0.532851\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 12.0000 12.0000i 0.703452 0.703452i
\(292\) 0 0
\(293\) 9.00000 + 9.00000i 0.525786 + 0.525786i 0.919313 0.393527i \(-0.128745\pi\)
−0.393527 + 0.919313i \(0.628745\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 24.0000i 1.39262i
\(298\) 0 0
\(299\) −24.0000 24.0000i −1.38796 1.38796i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −3.00000 + 3.00000i −0.171219 + 0.171219i −0.787515 0.616296i \(-0.788633\pi\)
0.616296 + 0.787515i \(0.288633\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.00000i 0.340229i −0.985424 0.170114i \(-0.945586\pi\)
0.985424 0.170114i \(-0.0544137\pi\)
\(312\) 0 0
\(313\) 6.00000i 0.339140i 0.985518 + 0.169570i \(0.0542379\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.00000 + 7.00000i −0.393159 + 0.393159i −0.875812 0.482653i \(-0.839673\pi\)
0.482653 + 0.875812i \(0.339673\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) −4.00000 + 4.00000i −0.222566 + 0.222566i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.00000i 0.110600i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −5.00000 5.00000i −0.274825 0.274825i 0.556214 0.831039i \(-0.312253\pi\)
−0.831039 + 0.556214i \(0.812253\pi\)
\(332\) 0 0
\(333\) −3.00000 + 3.00000i −0.164399 + 0.164399i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 24.0000 1.30736 0.653682 0.756770i \(-0.273224\pi\)
0.653682 + 0.756770i \(0.273224\pi\)
\(338\) 0 0
\(339\) 8.00000 8.00000i 0.434500 0.434500i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.0000 19.0000i −1.01997 1.01997i −0.999796 0.0201770i \(-0.993577\pi\)
−0.0201770 0.999796i \(-0.506423\pi\)
\(348\) 0 0
\(349\) 5.00000 5.00000i 0.267644 0.267644i −0.560506 0.828150i \(-0.689393\pi\)
0.828150 + 0.560506i \(0.189393\pi\)
\(350\) 0 0
\(351\) −24.0000 −1.28103
\(352\) 0 0
\(353\) −16.0000 −0.851594 −0.425797 0.904819i \(-0.640006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.0000i 0.950004i −0.879985 0.475002i \(-0.842447\pi\)
0.879985 0.475002i \(-0.157553\pi\)
\(360\) 0 0
\(361\) 17.0000i 0.894737i
\(362\) 0 0
\(363\) −7.00000 7.00000i −0.367405 0.367405i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3.00000 3.00000i −0.155334 0.155334i 0.625161 0.780496i \(-0.285033\pi\)
−0.780496 + 0.625161i \(0.785033\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.0000i 0.927047i
\(378\) 0 0
\(379\) 1.00000 + 1.00000i 0.0513665 + 0.0513665i 0.732323 0.680957i \(-0.238436\pi\)
−0.680957 + 0.732323i \(0.738436\pi\)
\(380\) 0 0
\(381\) −6.00000 + 6.00000i −0.307389 + 0.307389i
\(382\) 0 0
\(383\) 10.0000 0.510976 0.255488 0.966812i \(-0.417764\pi\)
0.255488 + 0.966812i \(0.417764\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.00000 + 3.00000i −0.152499 + 0.152499i
\(388\) 0 0
\(389\) −15.0000 15.0000i −0.760530 0.760530i 0.215888 0.976418i \(-0.430735\pi\)
−0.976418 + 0.215888i \(0.930735\pi\)
\(390\) 0 0
\(391\) 32.0000i 1.61831i
\(392\) 0 0
\(393\) 18.0000i 0.907980i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.00000 9.00000i 0.451697 0.451697i −0.444220 0.895918i \(-0.646519\pi\)
0.895918 + 0.444220i \(0.146519\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.0000i 0.892227i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) −2.00000 2.00000i −0.0986527 0.0986527i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 14.0000 0.685583
\(418\) 0 0
\(419\) 15.0000 15.0000i 0.732798 0.732798i −0.238375 0.971173i \(-0.576615\pi\)
0.971173 + 0.238375i \(0.0766148\pi\)
\(420\) 0 0
\(421\) −5.00000 5.00000i −0.243685 0.243685i 0.574688 0.818373i \(-0.305124\pi\)
−0.818373 + 0.574688i \(0.805124\pi\)
\(422\) 0 0
\(423\) 2.00000i 0.0972433i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −18.0000 + 18.0000i −0.869048 + 0.869048i
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) 36.0000 1.73005 0.865025 0.501729i \(-0.167303\pi\)
0.865025 + 0.501729i \(0.167303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.00000 + 8.00000i 0.382692 + 0.382692i
\(438\) 0 0
\(439\) 10.0000i 0.477274i −0.971109 0.238637i \(-0.923299\pi\)
0.971109 0.238637i \(-0.0767006\pi\)
\(440\) 0 0
\(441\) 7.00000i 0.333333i
\(442\) 0 0
\(443\) −9.00000 9.00000i −0.427603 0.427603i 0.460208 0.887811i \(-0.347775\pi\)
−0.887811 + 0.460208i \(0.847775\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −18.0000 18.0000i −0.845714 0.845714i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000i 0.842004i 0.907060 + 0.421002i \(0.138322\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(458\) 0 0
\(459\) −16.0000 16.0000i −0.746816 0.746816i
\(460\) 0 0
\(461\) 3.00000 3.00000i 0.139724 0.139724i −0.633785 0.773509i \(-0.718500\pi\)
0.773509 + 0.633785i \(0.218500\pi\)
\(462\) 0 0
\(463\) −30.0000 −1.39422 −0.697109 0.716965i \(-0.745531\pi\)
−0.697109 + 0.716965i \(0.745531\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.00000 5.00000i 0.231372 0.231372i −0.581893 0.813265i \(-0.697688\pi\)
0.813265 + 0.581893i \(0.197688\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 18.0000i 0.829396i
\(472\) 0 0
\(473\) 18.0000i 0.827641i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −9.00000 + 9.00000i −0.412082 + 0.412082i
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 24.0000i 1.08754i −0.839233 0.543772i \(-0.816996\pi\)
0.839233 0.543772i \(-0.183004\pi\)
\(488\) 0 0
\(489\) 18.0000i 0.813988i
\(490\) 0 0
\(491\) 15.0000 + 15.0000i 0.676941 + 0.676941i 0.959307 0.282366i \(-0.0911193\pi\)
−0.282366 + 0.959307i \(0.591119\pi\)
\(492\) 0 0
\(493\) −12.0000 + 12.0000i −0.540453 + 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −29.0000 + 29.0000i −1.29822 + 1.29822i −0.368650 + 0.929568i \(0.620180\pi\)
−0.929568 + 0.368650i \(0.879820\pi\)
\(500\) 0 0
\(501\) 8.00000 + 8.00000i 0.357414 + 0.357414i
\(502\) 0 0
\(503\) 32.0000i 1.42681i 0.700752 + 0.713405i \(0.252848\pi\)
−0.700752 + 0.713405i \(0.747152\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5.00000 + 5.00000i 0.222058 + 0.222058i
\(508\) 0 0
\(509\) 9.00000 9.00000i 0.398918 0.398918i −0.478933 0.877851i \(-0.658976\pi\)
0.877851 + 0.478933i \(0.158976\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 8.00000 0.353209
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −6.00000 6.00000i −0.263880 0.263880i
\(518\) 0 0
\(519\) 18.0000i 0.790112i
\(520\) 0 0
\(521\) 24.0000i 1.05146i −0.850652 0.525730i \(-0.823792\pi\)
0.850652 0.525730i \(-0.176208\pi\)
\(522\) 0 0
\(523\) −9.00000 9.00000i −0.393543 0.393543i 0.482405 0.875948i \(-0.339763\pi\)
−0.875948 + 0.482405i \(0.839763\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) −9.00000 + 9.00000i −0.390567 + 0.390567i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.00000i 0.258919i
\(538\) 0 0
\(539\) 21.0000 + 21.0000i 0.904534 + 0.904534i
\(540\) 0 0
\(541\) −1.00000 + 1.00000i −0.0429934 + 0.0429934i −0.728277 0.685283i \(-0.759678\pi\)
0.685283 + 0.728277i \(0.259678\pi\)
\(542\) 0 0
\(543\) 2.00000 0.0858282
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −3.00000 + 3.00000i −0.128271 + 0.128271i −0.768328 0.640057i \(-0.778911\pi\)
0.640057 + 0.768328i \(0.278911\pi\)
\(548\) 0 0
\(549\) −5.00000 5.00000i −0.213395 0.213395i
\(550\) 0 0
\(551\) 6.00000i 0.255609i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.00000 9.00000i 0.381342 0.381342i −0.490243 0.871586i \(-0.663092\pi\)
0.871586 + 0.490243i \(0.163092\pi\)
\(558\) 0 0
\(559\) 18.0000 0.761319
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) 0 0
\(563\) 19.0000 19.0000i 0.800755 0.800755i −0.182459 0.983213i \(-0.558406\pi\)
0.983213 + 0.182459i \(0.0584057\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 24.0000i 1.00613i −0.864248 0.503066i \(-0.832205\pi\)
0.864248 0.503066i \(-0.167795\pi\)
\(570\) 0 0
\(571\) 11.0000 + 11.0000i 0.460336 + 0.460336i 0.898765 0.438430i \(-0.144465\pi\)
−0.438430 + 0.898765i \(0.644465\pi\)
\(572\) 0 0
\(573\) −24.0000 + 24.0000i −1.00261 + 1.00261i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −24.0000 −0.999133 −0.499567 0.866276i \(-0.666507\pi\)
−0.499567 + 0.866276i \(0.666507\pi\)
\(578\) 0 0
\(579\) 12.0000 12.0000i 0.498703 0.498703i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 54.0000i 2.23645i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.00000 + 9.00000i 0.371470 + 0.371470i 0.868012 0.496543i \(-0.165397\pi\)
−0.496543 + 0.868012i \(0.665397\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 10.0000 0.411345
\(592\) 0 0
\(593\) 32.0000 1.31408 0.657041 0.753855i \(-0.271808\pi\)
0.657041 + 0.753855i \(0.271808\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.00000 + 2.00000i 0.0818546 + 0.0818546i
\(598\) 0 0
\(599\) 30.0000i 1.22577i 0.790173 + 0.612883i \(0.209990\pi\)
−0.790173 + 0.612883i \(0.790010\pi\)
\(600\) 0 0
\(601\) 36.0000i 1.46847i −0.678895 0.734235i \(-0.737541\pi\)
0.678895 0.734235i \(-0.262459\pi\)
\(602\) 0 0
\(603\) −3.00000 3.00000i −0.122169 0.122169i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −42.0000 −1.70473 −0.852364 0.522949i \(-0.824832\pi\)
−0.852364 + 0.522949i \(0.824832\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.00000 + 6.00000i −0.242734 + 0.242734i
\(612\) 0 0
\(613\) −27.0000 27.0000i −1.09052 1.09052i −0.995473 0.0950469i \(-0.969700\pi\)
−0.0950469 0.995473i \(-0.530300\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.0000i 0.402585i −0.979531 0.201292i \(-0.935486\pi\)
0.979531 0.201292i \(-0.0645141\pi\)
\(618\) 0 0
\(619\) 13.0000 + 13.0000i 0.522514 + 0.522514i 0.918330 0.395816i \(-0.129538\pi\)
−0.395816 + 0.918330i \(0.629538\pi\)
\(620\) 0 0
\(621\) −32.0000 + 32.0000i −1.28412 + 1.28412i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 6.00000 6.00000i 0.239617 0.239617i
\(628\) 0 0
\(629\) 12.0000 + 12.0000i 0.478471 + 0.478471i
\(630\) 0 0
\(631\) 2.00000i 0.0796187i 0.999207 + 0.0398094i \(0.0126751\pi\)
−0.999207 + 0.0398094i \(0.987325\pi\)
\(632\) 0 0
\(633\) 22.0000i 0.874421i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 21.0000 21.0000i 0.832050 0.832050i
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 27.0000 27.0000i 1.06478 1.06478i 0.0670247 0.997751i \(-0.478649\pi\)
0.997751 0.0670247i \(-0.0213506\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.0000i 1.25805i 0.777385 + 0.629025i \(0.216546\pi\)
−0.777385 + 0.629025i \(0.783454\pi\)
\(648\) 0 0
\(649\) 54.0000i 2.11969i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.00000 + 9.00000i −0.352197 + 0.352197i −0.860927 0.508729i \(-0.830115\pi\)
0.508729 + 0.860927i \(0.330115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) −21.0000 + 21.0000i −0.818044 + 0.818044i −0.985824 0.167781i \(-0.946340\pi\)
0.167781 + 0.985824i \(0.446340\pi\)
\(660\) 0 0
\(661\) −29.0000 29.0000i −1.12797 1.12797i −0.990507 0.137462i \(-0.956105\pi\)
−0.137462 0.990507i \(-0.543895\pi\)
\(662\) 0 0
\(663\) 24.0000i 0.932083i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24.0000 + 24.0000i 0.929284 + 0.929284i
\(668\) 0 0
\(669\) 6.00000 6.00000i 0.231973 0.231973i
\(670\) 0 0
\(671\) −30.0000 −1.15814
\(672\) 0 0
\(673\) 12.0000 0.462566 0.231283 0.972887i \(-0.425708\pi\)
0.231283 + 0.972887i \(0.425708\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.00000 9.00000i −0.345898 0.345898i 0.512681 0.858579i \(-0.328652\pi\)
−0.858579 + 0.512681i \(0.828652\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 18.0000i 0.689761i
\(682\) 0 0
\(683\) −13.0000 13.0000i −0.497431 0.497431i 0.413206 0.910637i \(-0.364409\pi\)
−0.910637 + 0.413206i \(0.864409\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 14.0000 0.534133
\(688\) 0 0
\(689\) 54.0000 2.05724
\(690\) 0 0
\(691\) 5.00000 5.00000i 0.190209 0.190209i −0.605577 0.795786i \(-0.707058\pi\)
0.795786 + 0.605577i \(0.207058\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 22.0000 + 22.0000i 0.832116 + 0.832116i
\(700\) 0 0
\(701\) 3.00000 3.00000i 0.113308 0.113308i −0.648179 0.761488i \(-0.724469\pi\)
0.761488 + 0.648179i \(0.224469\pi\)
\(702\) 0 0
\(703\) −6.00000 −0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 13.0000 + 13.0000i 0.488225 + 0.488225i 0.907746 0.419521i \(-0.137802\pi\)
−0.419521 + 0.907746i \(0.637802\pi\)
\(710\) 0 0
\(711\) 8.00000i 0.300023i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.0000 + 24.0000i −0.896296 + 0.896296i
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 18.0000 18.0000i 0.669427 0.669427i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 24.0000i 0.890111i −0.895503 0.445055i \(-0.853184\pi\)
0.895503 0.445055i \(-0.146816\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 12.0000 + 12.0000i 0.443836 + 0.443836i
\(732\) 0 0
\(733\) 3.00000 3.00000i 0.110808 0.110808i −0.649529 0.760337i \(-0.725034\pi\)
0.760337 + 0.649529i \(0.225034\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −18.0000 −0.663039
\(738\) 0 0
\(739\) 19.0000 19.0000i 0.698926 0.698926i −0.265253 0.964179i \(-0.585455\pi\)
0.964179 + 0.265253i \(0.0854554\pi\)
\(740\) 0 0
\(741\) −6.00000 6.00000i −0.220416 0.220416i
\(742\) 0 0
\(743\) 8.00000i 0.293492i −0.989174 0.146746i \(-0.953120\pi\)
0.989174 0.146746i \(-0.0468799\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −9.00000 9.00000i −0.329293 0.329293i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 18.0000 0.655956
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −33.0000 33.0000i −1.19941 1.19941i −0.974345 0.225061i \(-0.927742\pi\)
−0.225061 0.974345i \(-0.572258\pi\)
\(758\) 0 0
\(759\) 48.0000i 1.74229i
\(760\) 0 0
\(761\) 48.0000i 1.74000i 0.493053 + 0.869999i \(0.335881\pi\)
−0.493053 + 0.869999i \(0.664119\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 54.0000 1.94983
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) −8.00000 + 8.00000i −0.288113 + 0.288113i
\(772\) 0 0
\(773\) −23.0000 23.0000i −0.827253 0.827253i 0.159883 0.987136i \(-0.448888\pi\)
−0.987136 + 0.159883i \(0.948888\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 18.0000 18.0000i 0.644091 0.644091i
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 33.0000 33.0000i 1.17632 1.17632i 0.195649 0.980674i \(-0.437319\pi\)
0.980674 0.195649i \(-0.0626813\pi\)
\(788\) 0 0
\(789\) 16.0000 + 16.0000i 0.569615 + 0.569615i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.0000i 1.06533i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19.0000 + 19.0000i −0.673015 + 0.673015i −0.958410 0.285395i \(-0.907875\pi\)
0.285395