Properties

Label 1600.2.j.e
Level $1600$
Weight $2$
Character orbit 1600.j
Analytic conductor $12.776$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 400)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24q - 40q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24q - 40q^{9} + 20q^{11} + 12q^{19} + 8q^{29} - 20q^{51} - 8q^{59} - 48q^{61} - 64q^{69} + 16q^{71} + 104q^{79} + 48q^{81} + 96q^{89} - 64q^{91} - 128q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
143.1 0 3.25766i 0 0 0 2.54012 2.54012i 0 −7.61238 0
143.2 0 2.70780i 0 0 0 −1.60911 + 1.60911i 0 −4.33218 0
143.3 0 2.35800i 0 0 0 −2.66357 + 2.66357i 0 −2.56018 0
143.4 0 1.86755i 0 0 0 0.719989 0.719989i 0 −0.487737 0
143.5 0 0.790153i 0 0 0 −0.139907 + 0.139907i 0 2.37566 0
143.6 0 0.619018i 0 0 0 1.82373 1.82373i 0 2.61682 0
143.7 0 0.619018i 0 0 0 −1.82373 + 1.82373i 0 2.61682 0
143.8 0 0.790153i 0 0 0 0.139907 0.139907i 0 2.37566 0
143.9 0 1.86755i 0 0 0 −0.719989 + 0.719989i 0 −0.487737 0
143.10 0 2.35800i 0 0 0 2.66357 2.66357i 0 −2.56018 0
143.11 0 2.70780i 0 0 0 1.60911 1.60911i 0 −4.33218 0
143.12 0 3.25766i 0 0 0 −2.54012 + 2.54012i 0 −7.61238 0
1007.1 0 3.25766i 0 0 0 −2.54012 2.54012i 0 −7.61238 0
1007.2 0 2.70780i 0 0 0 1.60911 + 1.60911i 0 −4.33218 0
1007.3 0 2.35800i 0 0 0 2.66357 + 2.66357i 0 −2.56018 0
1007.4 0 1.86755i 0 0 0 −0.719989 0.719989i 0 −0.487737 0
1007.5 0 0.790153i 0 0 0 0.139907 + 0.139907i 0 2.37566 0
1007.6 0 0.619018i 0 0 0 −1.82373 1.82373i 0 2.61682 0
1007.7 0 0.619018i 0 0 0 1.82373 + 1.82373i 0 2.61682 0
1007.8 0 0.790153i 0 0 0 −0.139907 0.139907i 0 2.37566 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1007.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
80.j even 4 1 inner
80.s even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.2.j.e 24
4.b odd 2 1 400.2.j.e 24
5.b even 2 1 inner 1600.2.j.e 24
5.c odd 4 2 1600.2.s.e 24
16.e even 4 1 400.2.s.e yes 24
16.f odd 4 1 1600.2.s.e 24
20.d odd 2 1 400.2.j.e 24
20.e even 4 2 400.2.s.e yes 24
80.i odd 4 1 400.2.j.e 24
80.j even 4 1 inner 1600.2.j.e 24
80.k odd 4 1 1600.2.s.e 24
80.q even 4 1 400.2.s.e yes 24
80.s even 4 1 inner 1600.2.j.e 24
80.t odd 4 1 400.2.j.e 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
400.2.j.e 24 4.b odd 2 1
400.2.j.e 24 20.d odd 2 1
400.2.j.e 24 80.i odd 4 1
400.2.j.e 24 80.t odd 4 1
400.2.s.e yes 24 16.e even 4 1
400.2.s.e yes 24 20.e even 4 2
400.2.s.e yes 24 80.q even 4 1
1600.2.j.e 24 1.a even 1 1 trivial
1600.2.j.e 24 5.b even 2 1 inner
1600.2.j.e 24 80.j even 4 1 inner
1600.2.j.e 24 80.s even 4 1 inner
1600.2.s.e 24 5.c odd 4 2
1600.2.s.e 24 16.f odd 4 1
1600.2.s.e 24 80.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 28 T_{3}^{10} + 287 T_{3}^{8} + 1320 T_{3}^{6} + 2631 T_{3}^{4} + 1772 T_{3}^{2} + 361 \) acting on \(S_{2}^{\mathrm{new}}(1600, [\chi])\).