Properties

Label 1600.2.d
Level $1600$
Weight $2$
Character orbit 1600.d
Rep. character $\chi_{1600}(801,\cdot)$
Character field $\Q$
Dimension $38$
Newform subspaces $9$
Sturm bound $480$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(480\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(3\), \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1600, [\chi])\).

Total New Old
Modular forms 276 38 238
Cusp forms 204 38 166
Eisenstein series 72 0 72

Trace form

\( 38 q - 38 q^{9} + 12 q^{17} + 24 q^{33} - 36 q^{41} + 22 q^{49} - 8 q^{57} + 28 q^{73} + 110 q^{81} - 36 q^{89} - 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1600.2.d.a 1600.d 8.b $2$ $12.776$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-2}) \) 64.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{3}-q^{9}+3\beta q^{11}+6 q^{17}-\beta q^{19}+\cdots\)
1600.2.d.b 1600.d 8.b $4$ $12.776$ \(\Q(\zeta_{12})\) None 320.2.d.a \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{3} q^{3}+(\beta_1-3)q^{7}+(2\beta_1-1)q^{9}+\cdots\)
1600.2.d.c 1600.d 8.b $4$ $12.776$ \(\Q(i, \sqrt{6})\) \(\Q(\sqrt{-2}) \) 1600.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{2}q^{3}+(-4-\beta _{3})q^{9}+(\beta _{1}+\beta _{2}+\cdots)q^{11}+\cdots\)
1600.2.d.d 1600.d 8.b $4$ $12.776$ \(\Q(i, \sqrt{6})\) \(\Q(\sqrt{-2}) \) 1600.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{2}q^{3}+(-4-\beta _{3})q^{9}+(-\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots\)
1600.2.d.e 1600.d 8.b $4$ $12.776$ \(\Q(\zeta_{12})\) None 1600.2.d.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{3}-\beta_{3} q^{7}+2 q^{9}+3\beta_1 q^{11}+\cdots\)
1600.2.d.f 1600.d 8.b $4$ $12.776$ \(\Q(\zeta_{12})\) None 1600.2.d.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{3}+\beta_{3} q^{7}+2 q^{9}-3\beta_1 q^{11}+\cdots\)
1600.2.d.g 1600.d 8.b $4$ $12.776$ \(\Q(i, \sqrt{5})\) \(\Q(\sqrt{-10}) \) 320.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{3}q^{7}+3q^{9}-\beta _{1}q^{11}+\beta _{2}q^{13}+\cdots\)
1600.2.d.h 1600.d 8.b $4$ $12.776$ \(\Q(\zeta_{12})\) None 320.2.d.a \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{3} q^{3}+(-\beta_1+3)q^{7}+(2\beta_1-1)q^{9}+\cdots\)
1600.2.d.i 1600.d 8.b $8$ $12.776$ \(\Q(\zeta_{24})\) None 320.2.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{5} q^{3}-\beta_{4} q^{7}-3 q^{9}-\beta_1 q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 2}\)