# Properties

 Label 1600.2.c.m Level $1600$ Weight $2$ Character orbit 1600.c Analytic conductor $12.776$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1600 = 2^{6} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1600.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$12.7760643234$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 40) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 4 i q^{7} + 3 q^{9} +O(q^{10})$$ $$q + 4 i q^{7} + 3 q^{9} + 4 q^{11} -2 i q^{13} + 2 i q^{17} -4 q^{19} + 4 i q^{23} -2 q^{29} + 8 q^{31} -6 i q^{37} -6 q^{41} + 8 i q^{43} -4 i q^{47} -9 q^{49} + 6 i q^{53} + 4 q^{59} + 2 q^{61} + 12 i q^{63} + 8 i q^{67} + 6 i q^{73} + 16 i q^{77} + 9 q^{81} + 16 i q^{83} + 6 q^{89} + 8 q^{91} -14 i q^{97} + 12 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 6q^{9} + O(q^{10})$$ $$2q + 6q^{9} + 8q^{11} - 8q^{19} - 4q^{29} + 16q^{31} - 12q^{41} - 18q^{49} + 8q^{59} + 4q^{61} + 18q^{81} + 12q^{89} + 16q^{91} + 24q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$1151$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 − 1.00000i 1.00000i
0 0 0 0 0 4.00000i 0 3.00000 0
449.2 0 0 0 0 0 4.00000i 0 3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.2.c.m 2
4.b odd 2 1 1600.2.c.k 2
5.b even 2 1 inner 1600.2.c.m 2
5.c odd 4 1 320.2.a.d 1
5.c odd 4 1 1600.2.a.k 1
8.b even 2 1 400.2.c.d 2
8.d odd 2 1 200.2.c.b 2
15.e even 4 1 2880.2.a.bg 1
20.d odd 2 1 1600.2.c.k 2
20.e even 4 1 320.2.a.c 1
20.e even 4 1 1600.2.a.o 1
24.f even 2 1 1800.2.f.a 2
24.h odd 2 1 3600.2.f.t 2
40.e odd 2 1 200.2.c.b 2
40.f even 2 1 400.2.c.d 2
40.i odd 4 1 80.2.a.a 1
40.i odd 4 1 400.2.a.e 1
40.k even 4 1 40.2.a.a 1
40.k even 4 1 200.2.a.c 1
60.l odd 4 1 2880.2.a.t 1
80.i odd 4 1 1280.2.d.a 2
80.j even 4 1 1280.2.d.j 2
80.s even 4 1 1280.2.d.j 2
80.t odd 4 1 1280.2.d.a 2
120.i odd 2 1 3600.2.f.t 2
120.m even 2 1 1800.2.f.a 2
120.q odd 4 1 360.2.a.a 1
120.q odd 4 1 1800.2.a.v 1
120.w even 4 1 720.2.a.e 1
120.w even 4 1 3600.2.a.h 1
280.s even 4 1 3920.2.a.s 1
280.y odd 4 1 1960.2.a.g 1
280.y odd 4 1 9800.2.a.x 1
280.bp odd 12 2 1960.2.q.i 2
280.br even 12 2 1960.2.q.h 2
360.bo even 12 2 3240.2.q.k 2
360.bt odd 12 2 3240.2.q.x 2
440.t even 4 1 9680.2.a.q 1
440.w odd 4 1 4840.2.a.f 1
520.bc even 4 1 6760.2.a.i 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.2.a.a 1 40.k even 4 1
80.2.a.a 1 40.i odd 4 1
200.2.a.c 1 40.k even 4 1
200.2.c.b 2 8.d odd 2 1
200.2.c.b 2 40.e odd 2 1
320.2.a.c 1 20.e even 4 1
320.2.a.d 1 5.c odd 4 1
360.2.a.a 1 120.q odd 4 1
400.2.a.e 1 40.i odd 4 1
400.2.c.d 2 8.b even 2 1
400.2.c.d 2 40.f even 2 1
720.2.a.e 1 120.w even 4 1
1280.2.d.a 2 80.i odd 4 1
1280.2.d.a 2 80.t odd 4 1
1280.2.d.j 2 80.j even 4 1
1280.2.d.j 2 80.s even 4 1
1600.2.a.k 1 5.c odd 4 1
1600.2.a.o 1 20.e even 4 1
1600.2.c.k 2 4.b odd 2 1
1600.2.c.k 2 20.d odd 2 1
1600.2.c.m 2 1.a even 1 1 trivial
1600.2.c.m 2 5.b even 2 1 inner
1800.2.a.v 1 120.q odd 4 1
1800.2.f.a 2 24.f even 2 1
1800.2.f.a 2 120.m even 2 1
1960.2.a.g 1 280.y odd 4 1
1960.2.q.h 2 280.br even 12 2
1960.2.q.i 2 280.bp odd 12 2
2880.2.a.t 1 60.l odd 4 1
2880.2.a.bg 1 15.e even 4 1
3240.2.q.k 2 360.bo even 12 2
3240.2.q.x 2 360.bt odd 12 2
3600.2.a.h 1 120.w even 4 1
3600.2.f.t 2 24.h odd 2 1
3600.2.f.t 2 120.i odd 2 1
3920.2.a.s 1 280.s even 4 1
4840.2.a.f 1 440.w odd 4 1
6760.2.a.i 1 520.bc even 4 1
9680.2.a.q 1 440.t even 4 1
9800.2.a.x 1 280.y odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1600, [\chi])$$:

 $$T_{3}$$ $$T_{7}^{2} + 16$$ $$T_{11} - 4$$ $$T_{19} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$16 + T^{2}$$
$11$ $$( -4 + T )^{2}$$
$13$ $$4 + T^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$( 4 + T )^{2}$$
$23$ $$16 + T^{2}$$
$29$ $$( 2 + T )^{2}$$
$31$ $$( -8 + T )^{2}$$
$37$ $$36 + T^{2}$$
$41$ $$( 6 + T )^{2}$$
$43$ $$64 + T^{2}$$
$47$ $$16 + T^{2}$$
$53$ $$36 + T^{2}$$
$59$ $$( -4 + T )^{2}$$
$61$ $$( -2 + T )^{2}$$
$67$ $$64 + T^{2}$$
$71$ $$T^{2}$$
$73$ $$36 + T^{2}$$
$79$ $$T^{2}$$
$83$ $$256 + T^{2}$$
$89$ $$( -6 + T )^{2}$$
$97$ $$196 + T^{2}$$