# Properties

 Label 1600.2.c.k.449.2 Level $1600$ Weight $2$ Character 1600.449 Analytic conductor $12.776$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1600 = 2^{6} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1600.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$12.7760643234$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 40) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 449.2 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 1600.449 Dual form 1600.2.c.k.449.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+4.00000i q^{7} +3.00000 q^{9} +O(q^{10})$$ $$q+4.00000i q^{7} +3.00000 q^{9} -4.00000 q^{11} +2.00000i q^{13} -2.00000i q^{17} +4.00000 q^{19} +4.00000i q^{23} -2.00000 q^{29} -8.00000 q^{31} +6.00000i q^{37} -6.00000 q^{41} +8.00000i q^{43} -4.00000i q^{47} -9.00000 q^{49} -6.00000i q^{53} -4.00000 q^{59} +2.00000 q^{61} +12.0000i q^{63} +8.00000i q^{67} -6.00000i q^{73} -16.0000i q^{77} +9.00000 q^{81} +16.0000i q^{83} +6.00000 q^{89} -8.00000 q^{91} +14.0000i q^{97} -12.0000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 6q^{9} + O(q^{10})$$ $$2q + 6q^{9} - 8q^{11} + 8q^{19} - 4q^{29} - 16q^{31} - 12q^{41} - 18q^{49} - 8q^{59} + 4q^{61} + 18q^{81} + 12q^{89} - 16q^{91} - 24q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$1151$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 4.00000i 1.51186i 0.654654 + 0.755929i $$0.272814\pi$$
−0.654654 + 0.755929i $$0.727186\pi$$
$$8$$ 0 0
$$9$$ 3.00000 1.00000
$$10$$ 0 0
$$11$$ −4.00000 −1.20605 −0.603023 0.797724i $$-0.706037\pi$$
−0.603023 + 0.797724i $$0.706037\pi$$
$$12$$ 0 0
$$13$$ 2.00000i 0.554700i 0.960769 + 0.277350i $$0.0894562\pi$$
−0.960769 + 0.277350i $$0.910544\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ − 2.00000i − 0.485071i −0.970143 0.242536i $$-0.922021\pi$$
0.970143 0.242536i $$-0.0779791\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 4.00000i 0.834058i 0.908893 + 0.417029i $$0.136929\pi$$
−0.908893 + 0.417029i $$0.863071\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −2.00000 −0.371391 −0.185695 0.982607i $$-0.559454\pi$$
−0.185695 + 0.982607i $$0.559454\pi$$
$$30$$ 0 0
$$31$$ −8.00000 −1.43684 −0.718421 0.695608i $$-0.755135\pi$$
−0.718421 + 0.695608i $$0.755135\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 6.00000i 0.986394i 0.869918 + 0.493197i $$0.164172\pi$$
−0.869918 + 0.493197i $$0.835828\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −6.00000 −0.937043 −0.468521 0.883452i $$-0.655213\pi$$
−0.468521 + 0.883452i $$0.655213\pi$$
$$42$$ 0 0
$$43$$ 8.00000i 1.21999i 0.792406 + 0.609994i $$0.208828\pi$$
−0.792406 + 0.609994i $$0.791172\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ − 4.00000i − 0.583460i −0.956501 0.291730i $$-0.905769\pi$$
0.956501 0.291730i $$-0.0942309\pi$$
$$48$$ 0 0
$$49$$ −9.00000 −1.28571
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ − 6.00000i − 0.824163i −0.911147 0.412082i $$-0.864802\pi$$
0.911147 0.412082i $$-0.135198\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −4.00000 −0.520756 −0.260378 0.965507i $$-0.583847\pi$$
−0.260378 + 0.965507i $$0.583847\pi$$
$$60$$ 0 0
$$61$$ 2.00000 0.256074 0.128037 0.991769i $$-0.459132\pi$$
0.128037 + 0.991769i $$0.459132\pi$$
$$62$$ 0 0
$$63$$ 12.0000i 1.51186i
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 8.00000i 0.977356i 0.872464 + 0.488678i $$0.162521\pi$$
−0.872464 + 0.488678i $$0.837479\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ − 6.00000i − 0.702247i −0.936329 0.351123i $$-0.885800\pi$$
0.936329 0.351123i $$-0.114200\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ − 16.0000i − 1.82337i
$$78$$ 0 0
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 0 0
$$81$$ 9.00000 1.00000
$$82$$ 0 0
$$83$$ 16.0000i 1.75623i 0.478451 + 0.878114i $$0.341198\pi$$
−0.478451 + 0.878114i $$0.658802\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 6.00000 0.635999 0.317999 0.948091i $$-0.396989\pi$$
0.317999 + 0.948091i $$0.396989\pi$$
$$90$$ 0 0
$$91$$ −8.00000 −0.838628
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 14.0000i 1.42148i 0.703452 + 0.710742i $$0.251641\pi$$
−0.703452 + 0.710742i $$0.748359\pi$$
$$98$$ 0 0
$$99$$ −12.0000 −1.20605
$$100$$ 0 0
$$101$$ −6.00000 −0.597022 −0.298511 0.954406i $$-0.596490\pi$$
−0.298511 + 0.954406i $$0.596490\pi$$
$$102$$ 0 0
$$103$$ 4.00000i 0.394132i 0.980390 + 0.197066i $$0.0631413\pi$$
−0.980390 + 0.197066i $$0.936859\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$108$$ 0 0
$$109$$ 14.0000 1.34096 0.670478 0.741929i $$-0.266089\pi$$
0.670478 + 0.741929i $$0.266089\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 18.0000i 1.69330i 0.532152 + 0.846649i $$0.321383\pi$$
−0.532152 + 0.846649i $$0.678617\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 6.00000i 0.554700i
$$118$$ 0 0
$$119$$ 8.00000 0.733359
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 12.0000i 1.06483i 0.846484 + 0.532414i $$0.178715\pi$$
−0.846484 + 0.532414i $$0.821285\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −12.0000 −1.04844 −0.524222 0.851581i $$-0.675644\pi$$
−0.524222 + 0.851581i $$0.675644\pi$$
$$132$$ 0 0
$$133$$ 16.0000i 1.38738i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ − 10.0000i − 0.854358i −0.904167 0.427179i $$-0.859507\pi$$
0.904167 0.427179i $$-0.140493\pi$$
$$138$$ 0 0
$$139$$ 12.0000 1.01783 0.508913 0.860818i $$-0.330047\pi$$
0.508913 + 0.860818i $$0.330047\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ − 8.00000i − 0.668994i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −10.0000 −0.819232 −0.409616 0.912258i $$-0.634337\pi$$
−0.409616 + 0.912258i $$0.634337\pi$$
$$150$$ 0 0
$$151$$ −16.0000 −1.30206 −0.651031 0.759051i $$-0.725663\pi$$
−0.651031 + 0.759051i $$0.725663\pi$$
$$152$$ 0 0
$$153$$ − 6.00000i − 0.485071i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ − 2.00000i − 0.159617i −0.996810 0.0798087i $$-0.974569\pi$$
0.996810 0.0798087i $$-0.0254309\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ −16.0000 −1.26098
$$162$$ 0 0
$$163$$ − 16.0000i − 1.25322i −0.779334 0.626608i $$-0.784443\pi$$
0.779334 0.626608i $$-0.215557\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ − 12.0000i − 0.928588i −0.885681 0.464294i $$-0.846308\pi$$
0.885681 0.464294i $$-0.153692\pi$$
$$168$$ 0 0
$$169$$ 9.00000 0.692308
$$170$$ 0 0
$$171$$ 12.0000 0.917663
$$172$$ 0 0
$$173$$ − 14.0000i − 1.06440i −0.846619 0.532200i $$-0.821365\pi$$
0.846619 0.532200i $$-0.178635\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 20.0000 1.49487 0.747435 0.664335i $$-0.231285\pi$$
0.747435 + 0.664335i $$0.231285\pi$$
$$180$$ 0 0
$$181$$ 10.0000 0.743294 0.371647 0.928374i $$-0.378793\pi$$
0.371647 + 0.928374i $$0.378793\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 8.00000i 0.585018i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 8.00000 0.578860 0.289430 0.957199i $$-0.406534\pi$$
0.289430 + 0.957199i $$0.406534\pi$$
$$192$$ 0 0
$$193$$ − 14.0000i − 1.00774i −0.863779 0.503871i $$-0.831909\pi$$
0.863779 0.503871i $$-0.168091\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 22.0000i 1.56744i 0.621117 + 0.783718i $$0.286679\pi$$
−0.621117 + 0.783718i $$0.713321\pi$$
$$198$$ 0 0
$$199$$ −8.00000 −0.567105 −0.283552 0.958957i $$-0.591513\pi$$
−0.283552 + 0.958957i $$0.591513\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ − 8.00000i − 0.561490i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 12.0000i 0.834058i
$$208$$ 0 0
$$209$$ −16.0000 −1.10674
$$210$$ 0 0
$$211$$ 4.00000 0.275371 0.137686 0.990476i $$-0.456034\pi$$
0.137686 + 0.990476i $$0.456034\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ − 32.0000i − 2.17230i
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 4.00000 0.269069
$$222$$ 0 0
$$223$$ − 4.00000i − 0.267860i −0.990991 0.133930i $$-0.957240\pi$$
0.990991 0.133930i $$-0.0427597\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ − 24.0000i − 1.59294i −0.604681 0.796468i $$-0.706699\pi$$
0.604681 0.796468i $$-0.293301\pi$$
$$228$$ 0 0
$$229$$ −26.0000 −1.71813 −0.859064 0.511868i $$-0.828954\pi$$
−0.859064 + 0.511868i $$0.828954\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ − 6.00000i − 0.393073i −0.980497 0.196537i $$-0.937031\pi$$
0.980497 0.196537i $$-0.0629694\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ 2.00000 0.128831 0.0644157 0.997923i $$-0.479482\pi$$
0.0644157 + 0.997923i $$0.479482\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 8.00000i 0.509028i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 12.0000 0.757433 0.378717 0.925513i $$-0.376365\pi$$
0.378717 + 0.925513i $$0.376365\pi$$
$$252$$ 0 0
$$253$$ − 16.0000i − 1.00591i
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 30.0000i 1.87135i 0.352865 + 0.935674i $$0.385208\pi$$
−0.352865 + 0.935674i $$0.614792\pi$$
$$258$$ 0 0
$$259$$ −24.0000 −1.49129
$$260$$ 0 0
$$261$$ −6.00000 −0.371391
$$262$$ 0 0
$$263$$ − 12.0000i − 0.739952i −0.929041 0.369976i $$-0.879366\pi$$
0.929041 0.369976i $$-0.120634\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 14.0000 0.853595 0.426798 0.904347i $$-0.359642\pi$$
0.426798 + 0.904347i $$0.359642\pi$$
$$270$$ 0 0
$$271$$ 24.0000 1.45790 0.728948 0.684569i $$-0.240010\pi$$
0.728948 + 0.684569i $$0.240010\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ − 10.0000i − 0.600842i −0.953807 0.300421i $$-0.902873\pi$$
0.953807 0.300421i $$-0.0971271\pi$$
$$278$$ 0 0
$$279$$ −24.0000 −1.43684
$$280$$ 0 0
$$281$$ 10.0000 0.596550 0.298275 0.954480i $$-0.403589\pi$$
0.298275 + 0.954480i $$0.403589\pi$$
$$282$$ 0 0
$$283$$ − 8.00000i − 0.475551i −0.971320 0.237775i $$-0.923582\pi$$
0.971320 0.237775i $$-0.0764182\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ − 24.0000i − 1.41668i
$$288$$ 0 0
$$289$$ 13.0000 0.764706
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 26.0000i 1.51894i 0.650545 + 0.759468i $$0.274541\pi$$
−0.650545 + 0.759468i $$0.725459\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −8.00000 −0.462652
$$300$$ 0 0
$$301$$ −32.0000 −1.84445
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ − 8.00000i − 0.456584i −0.973593 0.228292i $$-0.926686\pi$$
0.973593 0.228292i $$-0.0733141\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 32.0000 1.81455 0.907277 0.420534i $$-0.138157\pi$$
0.907277 + 0.420534i $$0.138157\pi$$
$$312$$ 0 0
$$313$$ 26.0000i 1.46961i 0.678280 + 0.734803i $$0.262726\pi$$
−0.678280 + 0.734803i $$0.737274\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ − 18.0000i − 1.01098i −0.862832 0.505490i $$-0.831312\pi$$
0.862832 0.505490i $$-0.168688\pi$$
$$318$$ 0 0
$$319$$ 8.00000 0.447914
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ − 8.00000i − 0.445132i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 16.0000 0.882109
$$330$$ 0 0
$$331$$ 12.0000 0.659580 0.329790 0.944054i $$-0.393022\pi$$
0.329790 + 0.944054i $$0.393022\pi$$
$$332$$ 0 0
$$333$$ 18.0000i 0.986394i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 14.0000i 0.762629i 0.924445 + 0.381314i $$0.124528\pi$$
−0.924445 + 0.381314i $$0.875472\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 32.0000 1.73290
$$342$$ 0 0
$$343$$ − 8.00000i − 0.431959i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ − 16.0000i − 0.858925i −0.903085 0.429463i $$-0.858703\pi$$
0.903085 0.429463i $$-0.141297\pi$$
$$348$$ 0 0
$$349$$ 30.0000 1.60586 0.802932 0.596071i $$-0.203272\pi$$
0.802932 + 0.596071i $$0.203272\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 2.00000i 0.106449i 0.998583 + 0.0532246i $$0.0169499\pi$$
−0.998583 + 0.0532246i $$0.983050\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 24.0000 1.26667 0.633336 0.773877i $$-0.281685\pi$$
0.633336 + 0.773877i $$0.281685\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ − 20.0000i − 1.04399i −0.852948 0.521996i $$-0.825188\pi$$
0.852948 0.521996i $$-0.174812\pi$$
$$368$$ 0 0
$$369$$ −18.0000 −0.937043
$$370$$ 0 0
$$371$$ 24.0000 1.24602
$$372$$ 0 0
$$373$$ − 22.0000i − 1.13912i −0.821951 0.569558i $$-0.807114\pi$$
0.821951 0.569558i $$-0.192886\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ − 4.00000i − 0.206010i
$$378$$ 0 0
$$379$$ −20.0000 −1.02733 −0.513665 0.857991i $$-0.671713\pi$$
−0.513665 + 0.857991i $$0.671713\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ − 36.0000i − 1.83951i −0.392488 0.919757i $$-0.628386\pi$$
0.392488 0.919757i $$-0.371614\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 24.0000i 1.21999i
$$388$$ 0 0
$$389$$ 6.00000 0.304212 0.152106 0.988364i $$-0.451394\pi$$
0.152106 + 0.988364i $$0.451394\pi$$
$$390$$ 0 0
$$391$$ 8.00000 0.404577
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ − 2.00000i − 0.100377i −0.998740 0.0501886i $$-0.984018\pi$$
0.998740 0.0501886i $$-0.0159822\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 18.0000 0.898877 0.449439 0.893311i $$-0.351624\pi$$
0.449439 + 0.893311i $$0.351624\pi$$
$$402$$ 0 0
$$403$$ − 16.0000i − 0.797017i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ − 24.0000i − 1.18964i
$$408$$ 0 0
$$409$$ −10.0000 −0.494468 −0.247234 0.968956i $$-0.579522\pi$$
−0.247234 + 0.968956i $$0.579522\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ − 16.0000i − 0.787309i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 36.0000 1.75872 0.879358 0.476162i $$-0.157972\pi$$
0.879358 + 0.476162i $$0.157972\pi$$
$$420$$ 0 0
$$421$$ −6.00000 −0.292422 −0.146211 0.989253i $$-0.546708\pi$$
−0.146211 + 0.989253i $$0.546708\pi$$
$$422$$ 0 0
$$423$$ − 12.0000i − 0.583460i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 8.00000i 0.387147i
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −40.0000 −1.92673 −0.963366 0.268190i $$-0.913575\pi$$
−0.963366 + 0.268190i $$0.913575\pi$$
$$432$$ 0 0
$$433$$ 2.00000i 0.0961139i 0.998845 + 0.0480569i $$0.0153029\pi$$
−0.998845 + 0.0480569i $$0.984697\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 16.0000i 0.765384i
$$438$$ 0 0
$$439$$ 8.00000 0.381819 0.190910 0.981608i $$-0.438856\pi$$
0.190910 + 0.981608i $$0.438856\pi$$
$$440$$ 0 0
$$441$$ −27.0000 −1.28571
$$442$$ 0 0
$$443$$ − 24.0000i − 1.14027i −0.821549 0.570137i $$-0.806890\pi$$
0.821549 0.570137i $$-0.193110\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −18.0000 −0.849473 −0.424736 0.905317i $$-0.639633\pi$$
−0.424736 + 0.905317i $$0.639633\pi$$
$$450$$ 0 0
$$451$$ 24.0000 1.13012
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ − 10.0000i − 0.467780i −0.972263 0.233890i $$-0.924854\pi$$
0.972263 0.233890i $$-0.0751456\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 18.0000 0.838344 0.419172 0.907907i $$-0.362320\pi$$
0.419172 + 0.907907i $$0.362320\pi$$
$$462$$ 0 0
$$463$$ 12.0000i 0.557687i 0.960337 + 0.278844i $$0.0899511\pi$$
−0.960337 + 0.278844i $$0.910049\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 8.00000i 0.370196i 0.982720 + 0.185098i $$0.0592602\pi$$
−0.982720 + 0.185098i $$0.940740\pi$$
$$468$$ 0 0
$$469$$ −32.0000 −1.47762
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ − 32.0000i − 1.47136i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ − 18.0000i − 0.824163i
$$478$$ 0 0
$$479$$ −16.0000 −0.731059 −0.365529 0.930800i $$-0.619112\pi$$
−0.365529 + 0.930800i $$0.619112\pi$$
$$480$$ 0 0
$$481$$ −12.0000 −0.547153
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 20.0000i 0.906287i 0.891438 + 0.453143i $$0.149697\pi$$
−0.891438 + 0.453143i $$0.850303\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −36.0000 −1.62466 −0.812329 0.583200i $$-0.801800\pi$$
−0.812329 + 0.583200i $$0.801800\pi$$
$$492$$ 0 0
$$493$$ 4.00000i 0.180151i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −28.0000 −1.25345 −0.626726 0.779240i $$-0.715605\pi$$
−0.626726 + 0.779240i $$0.715605\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ − 12.0000i − 0.535054i −0.963550 0.267527i $$-0.913794\pi$$
0.963550 0.267527i $$-0.0862064\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −2.00000 −0.0886484 −0.0443242 0.999017i $$-0.514113\pi$$
−0.0443242 + 0.999017i $$0.514113\pi$$
$$510$$ 0 0
$$511$$ 24.0000 1.06170
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 16.0000i 0.703679i
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 10.0000 0.438108 0.219054 0.975713i $$-0.429703\pi$$
0.219054 + 0.975713i $$0.429703\pi$$
$$522$$ 0 0
$$523$$ 8.00000i 0.349816i 0.984585 + 0.174908i $$0.0559627\pi$$
−0.984585 + 0.174908i $$0.944037\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 16.0000i 0.696971i
$$528$$ 0 0
$$529$$ 7.00000 0.304348
$$530$$ 0 0
$$531$$ −12.0000 −0.520756
$$532$$ 0 0
$$533$$ − 12.0000i − 0.519778i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 36.0000 1.55063
$$540$$ 0 0
$$541$$ 2.00000 0.0859867 0.0429934 0.999075i $$-0.486311\pi$$
0.0429934 + 0.999075i $$0.486311\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 8.00000i 0.342055i 0.985266 + 0.171028i $$0.0547087\pi$$
−0.985266 + 0.171028i $$0.945291\pi$$
$$548$$ 0 0
$$549$$ 6.00000 0.256074
$$550$$ 0 0
$$551$$ −8.00000 −0.340811
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 14.0000i 0.593199i 0.955002 + 0.296600i $$0.0958526\pi$$
−0.955002 + 0.296600i $$0.904147\pi$$
$$558$$ 0 0
$$559$$ −16.0000 −0.676728
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ − 16.0000i − 0.674320i −0.941447 0.337160i $$-0.890534\pi$$
0.941447 0.337160i $$-0.109466\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 36.0000i 1.51186i
$$568$$ 0 0
$$569$$ 22.0000 0.922288 0.461144 0.887325i $$-0.347439\pi$$
0.461144 + 0.887325i $$0.347439\pi$$
$$570$$ 0 0
$$571$$ −4.00000 −0.167395 −0.0836974 0.996491i $$-0.526673\pi$$
−0.0836974 + 0.996491i $$0.526673\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ − 2.00000i − 0.0832611i −0.999133 0.0416305i $$-0.986745\pi$$
0.999133 0.0416305i $$-0.0132552\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −64.0000 −2.65517
$$582$$ 0 0
$$583$$ 24.0000i 0.993978i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ − 48.0000i − 1.98117i −0.136892 0.990586i $$-0.543711\pi$$
0.136892 0.990586i $$-0.456289\pi$$
$$588$$ 0 0
$$589$$ −32.0000 −1.31854
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 18.0000i 0.739171i 0.929197 + 0.369586i $$0.120500\pi$$
−0.929197 + 0.369586i $$0.879500\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 24.0000 0.980613 0.490307 0.871550i $$-0.336885\pi$$
0.490307 + 0.871550i $$0.336885\pi$$
$$600$$ 0 0
$$601$$ 10.0000 0.407909 0.203954 0.978980i $$-0.434621\pi$$
0.203954 + 0.978980i $$0.434621\pi$$
$$602$$ 0 0
$$603$$ 24.0000i 0.977356i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 12.0000i 0.487065i 0.969893 + 0.243532i $$0.0783062\pi$$
−0.969893 + 0.243532i $$0.921694\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 8.00000 0.323645
$$612$$ 0 0
$$613$$ 42.0000i 1.69636i 0.529705 + 0.848182i $$0.322303\pi$$
−0.529705 + 0.848182i $$0.677697\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 6.00000i 0.241551i 0.992680 + 0.120775i $$0.0385381\pi$$
−0.992680 + 0.120775i $$0.961462\pi$$
$$618$$ 0 0
$$619$$ −4.00000 −0.160774 −0.0803868 0.996764i $$-0.525616\pi$$
−0.0803868 + 0.996764i $$0.525616\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 24.0000i 0.961540i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 12.0000 0.478471
$$630$$ 0 0
$$631$$ 16.0000 0.636950 0.318475 0.947931i $$-0.396829\pi$$
0.318475 + 0.947931i $$0.396829\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ − 18.0000i − 0.713186i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 18.0000 0.710957 0.355479 0.934684i $$-0.384318\pi$$
0.355479 + 0.934684i $$0.384318\pi$$
$$642$$ 0 0
$$643$$ 48.0000i 1.89294i 0.322799 + 0.946468i $$0.395376\pi$$
−0.322799 + 0.946468i $$0.604624\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ − 12.0000i − 0.471769i −0.971781 0.235884i $$-0.924201\pi$$
0.971781 0.235884i $$-0.0757987\pi$$
$$648$$ 0 0
$$649$$ 16.0000 0.628055
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 34.0000i 1.33052i 0.746611 + 0.665261i $$0.231680\pi$$
−0.746611 + 0.665261i $$0.768320\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ − 18.0000i − 0.702247i
$$658$$ 0 0
$$659$$ −12.0000 −0.467454 −0.233727 0.972302i $$-0.575092\pi$$
−0.233727 + 0.972302i $$0.575092\pi$$
$$660$$ 0 0
$$661$$ 42.0000 1.63361 0.816805 0.576913i $$-0.195743\pi$$
0.816805 + 0.576913i $$0.195743\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ − 8.00000i − 0.309761i
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −8.00000 −0.308837
$$672$$ 0 0
$$673$$ 18.0000i 0.693849i 0.937893 + 0.346925i $$0.112774\pi$$
−0.937893 + 0.346925i $$0.887226\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 22.0000i 0.845529i 0.906240 + 0.422764i $$0.138940\pi$$
−0.906240 + 0.422764i $$0.861060\pi$$
$$678$$ 0 0
$$679$$ −56.0000 −2.14908
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ − 24.0000i − 0.918334i −0.888350 0.459167i $$-0.848148\pi$$
0.888350 0.459167i $$-0.151852\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ −44.0000 −1.67384 −0.836919 0.547326i $$-0.815646\pi$$
−0.836919 + 0.547326i $$0.815646\pi$$
$$692$$ 0 0
$$693$$ − 48.0000i − 1.82337i
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 12.0000i 0.454532i
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 34.0000 1.28416 0.642081 0.766637i $$-0.278071\pi$$
0.642081 + 0.766637i $$0.278071\pi$$
$$702$$ 0 0
$$703$$ 24.0000i 0.905177i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ − 24.0000i − 0.902613i
$$708$$ 0 0
$$709$$ 38.0000 1.42712 0.713560 0.700594i $$-0.247082\pi$$
0.713560 + 0.700594i $$0.247082\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ − 32.0000i − 1.19841i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 32.0000 1.19340 0.596699 0.802465i $$-0.296479\pi$$
0.596699 + 0.802465i $$0.296479\pi$$
$$720$$ 0 0
$$721$$ −16.0000 −0.595871
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ − 44.0000i − 1.63187i −0.578144 0.815935i $$-0.696223\pi$$
0.578144 0.815935i $$-0.303777\pi$$
$$728$$ 0 0
$$729$$ 27.0000 1.00000
$$730$$ 0 0
$$731$$ 16.0000 0.591781
$$732$$ 0 0
$$733$$ − 30.0000i − 1.10808i −0.832492 0.554038i $$-0.813086\pi$$
0.832492 0.554038i $$-0.186914\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ − 32.0000i − 1.17874i
$$738$$ 0 0
$$739$$ 36.0000 1.32428 0.662141 0.749380i $$-0.269648\pi$$
0.662141 + 0.749380i $$0.269648\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 36.0000i 1.32071i 0.750953 + 0.660356i $$0.229595\pi$$
−0.750953 + 0.660356i $$0.770405\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 48.0000i 1.75623i
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −24.0000 −0.875772 −0.437886 0.899030i $$-0.644273\pi$$
−0.437886 + 0.899030i $$0.644273\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ − 10.0000i − 0.363456i −0.983349 0.181728i $$-0.941831\pi$$
0.983349 0.181728i $$-0.0581691\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −6.00000 −0.217500 −0.108750 0.994069i $$-0.534685\pi$$
−0.108750 + 0.994069i $$0.534685\pi$$
$$762$$ 0 0
$$763$$ 56.0000i 2.02734i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ − 8.00000i − 0.288863i
$$768$$ 0 0
$$769$$ −34.0000 −1.22607 −0.613036 0.790055i $$-0.710052\pi$$
−0.613036 + 0.790055i $$0.710052\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 42.0000i 1.51064i 0.655359 + 0.755318i $$0.272517\pi$$
−0.655359 + 0.755318i $$0.727483\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −24.0000 −0.859889
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 8.00000i 0.285169i 0.989783 + 0.142585i $$0.0455413\pi$$
−0.989783 + 0.142585i $$0.954459\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −72.0000 −2.56003
$$792$$ 0 0
$$793$$ 4.00000i 0.142044i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ − 18.0000i − 0.637593i −0.947823 0.318796i $$-0.896721\pi$$
0.947823 0.318796i $$-0.103279\pi$$
$$798$$ 0 0
$$799$$ −8.00000 −0.283020
$$800$$ 0 0
$$801$$ 18.0000 0.635999
$$802$$ 0 0
$$803$$ 24.0000i 0.846942i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −42.0000 −1.47664 −0.738321 0.674450i $$-0.764381\pi$$
−0.738321 + 0.674450i $$0.764381\pi$$
$$810$$ 0 0
$$811$$ 28.0000 0.983213 0.491606 0.870817i $$-0.336410\pi$$
0.491606 + 0.870817i $$0.336410\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 32.0000i 1.11954i
$$818$$ 0 0
$$819$$ −24.0000 −0.838628
$$820$$ 0 0
$$821$$ −22.0000 −0.767805 −0.383903 0.923374i $$-0.625420\pi$$
−0.383903 + 0.923374i $$0.625420\pi$$
$$822$$ 0 0
$$823$$ 4.00000i 0.139431i 0.997567 + 0.0697156i $$0.0222092\pi$$
−0.997567 + 0.0697156i $$0.977791\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 48.0000i 1.66912i 0.550914 + 0.834562i $$0.314279\pi$$
−0.550914 + 0.834562i $$0.685721\pi$$
$$828$$ 0 0
$$829$$ −2.00000 −0.0694629 −0.0347314 0.999397i $$-0.511058\pi$$
−0.0347314 + 0.999397i $$0.511058\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 18.0000i 0.623663i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 40.0000 1.38095 0.690477 0.723355i $$-0.257401\pi$$
0.690477 + 0.723355i $$0.257401\pi$$
$$840$$ 0 0
$$841$$ −25.0000 −0.862069
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 20.0000i 0.687208i
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −24.0000 −0.822709
$$852$$ 0 0
$$853$$ − 38.0000i − 1.30110i −0.759465 0.650548i $$-0.774539\pi$$
0.759465 0.650548i $$-0.225461\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 6.00000i 0.204956i 0.994735 + 0.102478i $$0.0326771\pi$$
−0.994735 + 0.102478i $$0.967323\pi$$
$$858$$ 0 0
$$859$$ −4.00000 −0.136478 −0.0682391 0.997669i $$-0.521738\pi$$
−0.0682391 + 0.997669i $$0.521738\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 12.0000i 0.408485i 0.978920 + 0.204242i $$0.0654731\pi$$
−0.978920 + 0.204242i $$0.934527\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ −16.0000 −0.542139
$$872$$ 0 0
$$873$$ 42.0000i 1.42148i
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 46.0000i 1.55331i 0.629926 + 0.776655i $$0.283085\pi$$
−0.629926 + 0.776655i $$0.716915\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −30.0000 −1.01073 −0.505363 0.862907i $$-0.668641\pi$$
−0.505363 + 0.862907i $$0.668641\pi$$
$$882$$ 0 0
$$883$$ 16.0000i 0.538443i 0.963078 + 0.269221i $$0.0867663\pi$$
−0.963078 + 0.269221i $$0.913234\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 20.0000i 0.671534i 0.941945 + 0.335767i $$0.108996\pi$$
−0.941945 + 0.335767i $$0.891004\pi$$
$$888$$ 0 0
$$889$$ −48.0000 −1.60987
$$890$$ 0 0
$$891$$ −36.0000 −1.20605
$$892$$ 0 0
$$893$$ − 16.0000i − 0.535420i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 16.0000 0.533630
$$900$$ 0 0
$$901$$ −12.0000 −0.399778
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ 48.0000i 1.59381i 0.604102 + 0.796907i $$0.293532\pi$$
−0.604102 + 0.796907i $$0.706468\pi$$
$$908$$ 0 0
$$909$$ −18.0000 −0.597022
$$910$$ 0 0
$$911$$ 40.0000 1.32526 0.662630 0.748947i $$-0.269440\pi$$
0.662630 + 0.748947i $$0.269440\pi$$
$$912$$ 0 0
$$913$$ − 64.0000i − 2.11809i
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ − 48.0000i − 1.58510i
$$918$$ 0 0
$$919$$ −8.00000 −0.263896 −0.131948 0.991257i $$-0.542123\pi$$
−0.131948 + 0.991257i $$0.542123\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 12.0000i 0.394132i
$$928$$ 0 0
$$929$$ 14.0000 0.459325 0.229663 0.973270i $$-0.426238\pi$$
0.229663 + 0.973270i $$0.426238\pi$$
$$930$$ 0 0
$$931$$ −36.0000 −1.17985
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 38.0000i 1.24141i 0.784046 + 0.620703i $$0.213153\pi$$
−0.784046 + 0.620703i $$0.786847\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −46.0000 −1.49956 −0.749779 0.661689i $$-0.769840\pi$$
−0.749779 + 0.661689i $$0.769840\pi$$
$$942$$ 0 0
$$943$$ − 24.0000i − 0.781548i
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ − 8.00000i − 0.259965i −0.991516 0.129983i $$-0.958508\pi$$
0.991516 0.129983i $$-0.0414921\pi$$
$$948$$ 0 0
$$949$$ 12.0000 0.389536
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ − 6.00000i − 0.194359i −0.995267 0.0971795i $$-0.969018\pi$$
0.995267 0.0971795i $$-0.0309821\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 40.0000 1.29167
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 36.0000i 1.15768i 0.815440 + 0.578841i $$0.196495\pi$$
−0.815440 + 0.578841i $$0.803505\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −20.0000 −0.641831 −0.320915 0.947108i $$-0.603990\pi$$
−0.320915 + 0.947108i $$0.603990\pi$$
$$972$$ 0 0
$$973$$ 48.0000i 1.53881i
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ − 2.00000i − 0.0639857i −0.999488 0.0319928i $$-0.989815\pi$$
0.999488 0.0319928i $$-0.0101854\pi$$
$$978$$ 0 0
$$979$$ −24.0000 −0.767043
$$980$$ 0 0
$$981$$ 42.0000 1.34096
$$982$$ 0 0
$$983$$ 36.0000i 1.14822i 0.818778 + 0.574111i $$0.194652\pi$$
−0.818778 + 0.574111i $$0.805348\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −32.0000 −1.01754
$$990$$ 0 0
$$991$$ −40.0000 −1.27064 −0.635321 0.772248i $$-0.719132\pi$$
−0.635321 + 0.772248i $$0.719132\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ − 42.0000i − 1.33015i −0.746775 0.665077i $$-0.768399\pi$$
0.746775 0.665077i $$-0.231601\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.2.c.k.449.2 2
4.3 odd 2 1600.2.c.m.449.1 2
5.2 odd 4 320.2.a.c.1.1 1
5.3 odd 4 1600.2.a.o.1.1 1
5.4 even 2 inner 1600.2.c.k.449.1 2
8.3 odd 2 400.2.c.d.49.1 2
8.5 even 2 200.2.c.b.49.2 2
15.2 even 4 2880.2.a.t.1.1 1
20.3 even 4 1600.2.a.k.1.1 1
20.7 even 4 320.2.a.d.1.1 1
20.19 odd 2 1600.2.c.m.449.2 2
24.5 odd 2 1800.2.f.a.649.2 2
24.11 even 2 3600.2.f.t.2449.1 2
40.3 even 4 400.2.a.e.1.1 1
40.13 odd 4 200.2.a.c.1.1 1
40.19 odd 2 400.2.c.d.49.2 2
40.27 even 4 80.2.a.a.1.1 1
40.29 even 2 200.2.c.b.49.1 2
40.37 odd 4 40.2.a.a.1.1 1
60.47 odd 4 2880.2.a.bg.1.1 1
80.27 even 4 1280.2.d.a.641.1 2
80.37 odd 4 1280.2.d.j.641.1 2
80.67 even 4 1280.2.d.a.641.2 2
80.77 odd 4 1280.2.d.j.641.2 2
120.29 odd 2 1800.2.f.a.649.1 2
120.53 even 4 1800.2.a.v.1.1 1
120.59 even 2 3600.2.f.t.2449.2 2
120.77 even 4 360.2.a.a.1.1 1
120.83 odd 4 3600.2.a.h.1.1 1
120.107 odd 4 720.2.a.e.1.1 1
280.13 even 4 9800.2.a.x.1.1 1
280.27 odd 4 3920.2.a.s.1.1 1
280.37 odd 12 1960.2.q.h.361.1 2
280.117 even 12 1960.2.q.i.361.1 2
280.157 even 12 1960.2.q.i.961.1 2
280.237 even 4 1960.2.a.g.1.1 1
280.277 odd 12 1960.2.q.h.961.1 2
360.77 even 12 3240.2.q.x.2161.1 2
360.157 odd 12 3240.2.q.k.2161.1 2
360.277 odd 12 3240.2.q.k.1081.1 2
360.317 even 12 3240.2.q.x.1081.1 2
440.197 even 4 4840.2.a.f.1.1 1
440.307 odd 4 9680.2.a.q.1.1 1
520.77 odd 4 6760.2.a.i.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.a.a.1.1 1 40.37 odd 4
80.2.a.a.1.1 1 40.27 even 4
200.2.a.c.1.1 1 40.13 odd 4
200.2.c.b.49.1 2 40.29 even 2
200.2.c.b.49.2 2 8.5 even 2
320.2.a.c.1.1 1 5.2 odd 4
320.2.a.d.1.1 1 20.7 even 4
360.2.a.a.1.1 1 120.77 even 4
400.2.a.e.1.1 1 40.3 even 4
400.2.c.d.49.1 2 8.3 odd 2
400.2.c.d.49.2 2 40.19 odd 2
720.2.a.e.1.1 1 120.107 odd 4
1280.2.d.a.641.1 2 80.27 even 4
1280.2.d.a.641.2 2 80.67 even 4
1280.2.d.j.641.1 2 80.37 odd 4
1280.2.d.j.641.2 2 80.77 odd 4
1600.2.a.k.1.1 1 20.3 even 4
1600.2.a.o.1.1 1 5.3 odd 4
1600.2.c.k.449.1 2 5.4 even 2 inner
1600.2.c.k.449.2 2 1.1 even 1 trivial
1600.2.c.m.449.1 2 4.3 odd 2
1600.2.c.m.449.2 2 20.19 odd 2
1800.2.a.v.1.1 1 120.53 even 4
1800.2.f.a.649.1 2 120.29 odd 2
1800.2.f.a.649.2 2 24.5 odd 2
1960.2.a.g.1.1 1 280.237 even 4
1960.2.q.h.361.1 2 280.37 odd 12
1960.2.q.h.961.1 2 280.277 odd 12
1960.2.q.i.361.1 2 280.117 even 12
1960.2.q.i.961.1 2 280.157 even 12
2880.2.a.t.1.1 1 15.2 even 4
2880.2.a.bg.1.1 1 60.47 odd 4
3240.2.q.k.1081.1 2 360.277 odd 12
3240.2.q.k.2161.1 2 360.157 odd 12
3240.2.q.x.1081.1 2 360.317 even 12
3240.2.q.x.2161.1 2 360.77 even 12
3600.2.a.h.1.1 1 120.83 odd 4
3600.2.f.t.2449.1 2 24.11 even 2
3600.2.f.t.2449.2 2 120.59 even 2
3920.2.a.s.1.1 1 280.27 odd 4
4840.2.a.f.1.1 1 440.197 even 4
6760.2.a.i.1.1 1 520.77 odd 4
9680.2.a.q.1.1 1 440.307 odd 4
9800.2.a.x.1.1 1 280.13 even 4