# Properties

 Label 1600.2.c.e Level $1600$ Weight $2$ Character orbit 1600.c Analytic conductor $12.776$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1600 = 2^{6} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1600.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$12.7760643234$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 20) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 i q^{3} -2 i q^{7} - q^{9} +O(q^{10})$$ $$q + 2 i q^{3} -2 i q^{7} - q^{9} + 2 i q^{13} -6 i q^{17} + 4 q^{19} + 4 q^{21} + 6 i q^{23} + 4 i q^{27} + 6 q^{29} + 4 q^{31} -2 i q^{37} -4 q^{39} + 6 q^{41} + 10 i q^{43} + 6 i q^{47} + 3 q^{49} + 12 q^{51} -6 i q^{53} + 8 i q^{57} -12 q^{59} -2 q^{61} + 2 i q^{63} + 2 i q^{67} -12 q^{69} + 12 q^{71} -2 i q^{73} + 8 q^{79} -11 q^{81} -6 i q^{83} + 12 i q^{87} + 6 q^{89} + 4 q^{91} + 8 i q^{93} + 2 i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{9} + O(q^{10})$$ $$2q - 2q^{9} + 8q^{19} + 8q^{21} + 12q^{29} + 8q^{31} - 8q^{39} + 12q^{41} + 6q^{49} + 24q^{51} - 24q^{59} - 4q^{61} - 24q^{69} + 24q^{71} + 16q^{79} - 22q^{81} + 12q^{89} + 8q^{91} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$1151$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 − 1.00000i 1.00000i
0 2.00000i 0 0 0 2.00000i 0 −1.00000 0
449.2 0 2.00000i 0 0 0 2.00000i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.2.c.e 2
4.b odd 2 1 1600.2.c.d 2
5.b even 2 1 inner 1600.2.c.e 2
5.c odd 4 1 320.2.a.a 1
5.c odd 4 1 1600.2.a.w 1
8.b even 2 1 400.2.c.b 2
8.d odd 2 1 100.2.c.a 2
15.e even 4 1 2880.2.a.f 1
20.d odd 2 1 1600.2.c.d 2
20.e even 4 1 320.2.a.f 1
20.e even 4 1 1600.2.a.c 1
24.f even 2 1 900.2.d.c 2
24.h odd 2 1 3600.2.f.j 2
40.e odd 2 1 100.2.c.a 2
40.f even 2 1 400.2.c.b 2
40.i odd 4 1 80.2.a.b 1
40.i odd 4 1 400.2.a.c 1
40.k even 4 1 20.2.a.a 1
40.k even 4 1 100.2.a.a 1
56.e even 2 1 4900.2.e.f 2
60.l odd 4 1 2880.2.a.m 1
80.i odd 4 1 1280.2.d.g 2
80.j even 4 1 1280.2.d.c 2
80.s even 4 1 1280.2.d.c 2
80.t odd 4 1 1280.2.d.g 2
120.i odd 2 1 3600.2.f.j 2
120.m even 2 1 900.2.d.c 2
120.q odd 4 1 180.2.a.a 1
120.q odd 4 1 900.2.a.b 1
120.w even 4 1 720.2.a.h 1
120.w even 4 1 3600.2.a.be 1
280.n even 2 1 4900.2.e.f 2
280.s even 4 1 3920.2.a.h 1
280.y odd 4 1 980.2.a.h 1
280.y odd 4 1 4900.2.a.e 1
280.bp odd 12 2 980.2.i.c 2
280.br even 12 2 980.2.i.i 2
360.bo even 12 2 1620.2.i.h 2
360.bt odd 12 2 1620.2.i.b 2
440.t even 4 1 9680.2.a.ba 1
440.w odd 4 1 2420.2.a.a 1
520.x odd 4 1 3380.2.f.b 2
520.bc even 4 1 3380.2.a.c 1
520.bk odd 4 1 3380.2.f.b 2
680.t even 4 1 5780.2.c.a 2
680.u even 4 1 5780.2.a.f 1
680.bl even 4 1 5780.2.c.a 2
760.y odd 4 1 7220.2.a.f 1
840.bm even 4 1 8820.2.a.g 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.2.a.a 1 40.k even 4 1
80.2.a.b 1 40.i odd 4 1
100.2.a.a 1 40.k even 4 1
100.2.c.a 2 8.d odd 2 1
100.2.c.a 2 40.e odd 2 1
180.2.a.a 1 120.q odd 4 1
320.2.a.a 1 5.c odd 4 1
320.2.a.f 1 20.e even 4 1
400.2.a.c 1 40.i odd 4 1
400.2.c.b 2 8.b even 2 1
400.2.c.b 2 40.f even 2 1
720.2.a.h 1 120.w even 4 1
900.2.a.b 1 120.q odd 4 1
900.2.d.c 2 24.f even 2 1
900.2.d.c 2 120.m even 2 1
980.2.a.h 1 280.y odd 4 1
980.2.i.c 2 280.bp odd 12 2
980.2.i.i 2 280.br even 12 2
1280.2.d.c 2 80.j even 4 1
1280.2.d.c 2 80.s even 4 1
1280.2.d.g 2 80.i odd 4 1
1280.2.d.g 2 80.t odd 4 1
1600.2.a.c 1 20.e even 4 1
1600.2.a.w 1 5.c odd 4 1
1600.2.c.d 2 4.b odd 2 1
1600.2.c.d 2 20.d odd 2 1
1600.2.c.e 2 1.a even 1 1 trivial
1600.2.c.e 2 5.b even 2 1 inner
1620.2.i.b 2 360.bt odd 12 2
1620.2.i.h 2 360.bo even 12 2
2420.2.a.a 1 440.w odd 4 1
2880.2.a.f 1 15.e even 4 1
2880.2.a.m 1 60.l odd 4 1
3380.2.a.c 1 520.bc even 4 1
3380.2.f.b 2 520.x odd 4 1
3380.2.f.b 2 520.bk odd 4 1
3600.2.a.be 1 120.w even 4 1
3600.2.f.j 2 24.h odd 2 1
3600.2.f.j 2 120.i odd 2 1
3920.2.a.h 1 280.s even 4 1
4900.2.a.e 1 280.y odd 4 1
4900.2.e.f 2 56.e even 2 1
4900.2.e.f 2 280.n even 2 1
5780.2.a.f 1 680.u even 4 1
5780.2.c.a 2 680.t even 4 1
5780.2.c.a 2 680.bl even 4 1
7220.2.a.f 1 760.y odd 4 1
8820.2.a.g 1 840.bm even 4 1
9680.2.a.ba 1 440.t even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1600, [\chi])$$:

 $$T_{3}^{2} + 4$$ $$T_{7}^{2} + 4$$ $$T_{11}$$ $$T_{19} - 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$4 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$4 + T^{2}$$
$11$ $$T^{2}$$
$13$ $$4 + T^{2}$$
$17$ $$36 + T^{2}$$
$19$ $$( -4 + T )^{2}$$
$23$ $$36 + T^{2}$$
$29$ $$( -6 + T )^{2}$$
$31$ $$( -4 + T )^{2}$$
$37$ $$4 + T^{2}$$
$41$ $$( -6 + T )^{2}$$
$43$ $$100 + T^{2}$$
$47$ $$36 + T^{2}$$
$53$ $$36 + T^{2}$$
$59$ $$( 12 + T )^{2}$$
$61$ $$( 2 + T )^{2}$$
$67$ $$4 + T^{2}$$
$71$ $$( -12 + T )^{2}$$
$73$ $$4 + T^{2}$$
$79$ $$( -8 + T )^{2}$$
$83$ $$36 + T^{2}$$
$89$ $$( -6 + T )^{2}$$
$97$ $$4 + T^{2}$$