# Properties

 Label 1600.2.c.d.449.1 Level $1600$ Weight $2$ Character 1600.449 Analytic conductor $12.776$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$1600 = 2^{6} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1600.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$12.7760643234$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 20) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 449.1 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 1600.449 Dual form 1600.2.c.d.449.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-2.00000i q^{3} +2.00000i q^{7} -1.00000 q^{9} +O(q^{10})$$ $$q-2.00000i q^{3} +2.00000i q^{7} -1.00000 q^{9} +2.00000i q^{13} -6.00000i q^{17} -4.00000 q^{19} +4.00000 q^{21} -6.00000i q^{23} -4.00000i q^{27} +6.00000 q^{29} -4.00000 q^{31} -2.00000i q^{37} +4.00000 q^{39} +6.00000 q^{41} -10.0000i q^{43} -6.00000i q^{47} +3.00000 q^{49} -12.0000 q^{51} -6.00000i q^{53} +8.00000i q^{57} +12.0000 q^{59} -2.00000 q^{61} -2.00000i q^{63} -2.00000i q^{67} -12.0000 q^{69} -12.0000 q^{71} -2.00000i q^{73} -8.00000 q^{79} -11.0000 q^{81} +6.00000i q^{83} -12.0000i q^{87} +6.00000 q^{89} -4.00000 q^{91} +8.00000i q^{93} +2.00000i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{9} + O(q^{10})$$ $$2q - 2q^{9} - 8q^{19} + 8q^{21} + 12q^{29} - 8q^{31} + 8q^{39} + 12q^{41} + 6q^{49} - 24q^{51} + 24q^{59} - 4q^{61} - 24q^{69} - 24q^{71} - 16q^{79} - 22q^{81} + 12q^{89} - 8q^{91} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$1151$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ − 2.00000i − 1.15470i −0.816497 0.577350i $$-0.804087\pi$$
0.816497 0.577350i $$-0.195913\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 2.00000i 0.755929i 0.925820 + 0.377964i $$0.123376\pi$$
−0.925820 + 0.377964i $$0.876624\pi$$
$$8$$ 0 0
$$9$$ −1.00000 −0.333333
$$10$$ 0 0
$$11$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$12$$ 0 0
$$13$$ 2.00000i 0.554700i 0.960769 + 0.277350i $$0.0894562\pi$$
−0.960769 + 0.277350i $$0.910544\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ − 6.00000i − 1.45521i −0.685994 0.727607i $$-0.740633\pi$$
0.685994 0.727607i $$-0.259367\pi$$
$$18$$ 0 0
$$19$$ −4.00000 −0.917663 −0.458831 0.888523i $$-0.651732\pi$$
−0.458831 + 0.888523i $$0.651732\pi$$
$$20$$ 0 0
$$21$$ 4.00000 0.872872
$$22$$ 0 0
$$23$$ − 6.00000i − 1.25109i −0.780189 0.625543i $$-0.784877\pi$$
0.780189 0.625543i $$-0.215123\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ − 4.00000i − 0.769800i
$$28$$ 0 0
$$29$$ 6.00000 1.11417 0.557086 0.830455i $$-0.311919\pi$$
0.557086 + 0.830455i $$0.311919\pi$$
$$30$$ 0 0
$$31$$ −4.00000 −0.718421 −0.359211 0.933257i $$-0.616954\pi$$
−0.359211 + 0.933257i $$0.616954\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ − 2.00000i − 0.328798i −0.986394 0.164399i $$-0.947432\pi$$
0.986394 0.164399i $$-0.0525685\pi$$
$$38$$ 0 0
$$39$$ 4.00000 0.640513
$$40$$ 0 0
$$41$$ 6.00000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ − 10.0000i − 1.52499i −0.646997 0.762493i $$-0.723975\pi$$
0.646997 0.762493i $$-0.276025\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ − 6.00000i − 0.875190i −0.899172 0.437595i $$-0.855830\pi$$
0.899172 0.437595i $$-0.144170\pi$$
$$48$$ 0 0
$$49$$ 3.00000 0.428571
$$50$$ 0 0
$$51$$ −12.0000 −1.68034
$$52$$ 0 0
$$53$$ − 6.00000i − 0.824163i −0.911147 0.412082i $$-0.864802\pi$$
0.911147 0.412082i $$-0.135198\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 8.00000i 1.05963i
$$58$$ 0 0
$$59$$ 12.0000 1.56227 0.781133 0.624364i $$-0.214642\pi$$
0.781133 + 0.624364i $$0.214642\pi$$
$$60$$ 0 0
$$61$$ −2.00000 −0.256074 −0.128037 0.991769i $$-0.540868\pi$$
−0.128037 + 0.991769i $$0.540868\pi$$
$$62$$ 0 0
$$63$$ − 2.00000i − 0.251976i
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ − 2.00000i − 0.244339i −0.992509 0.122169i $$-0.961015\pi$$
0.992509 0.122169i $$-0.0389851\pi$$
$$68$$ 0 0
$$69$$ −12.0000 −1.44463
$$70$$ 0 0
$$71$$ −12.0000 −1.42414 −0.712069 0.702109i $$-0.752242\pi$$
−0.712069 + 0.702109i $$0.752242\pi$$
$$72$$ 0 0
$$73$$ − 2.00000i − 0.234082i −0.993127 0.117041i $$-0.962659\pi$$
0.993127 0.117041i $$-0.0373409\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −8.00000 −0.900070 −0.450035 0.893011i $$-0.648589\pi$$
−0.450035 + 0.893011i $$0.648589\pi$$
$$80$$ 0 0
$$81$$ −11.0000 −1.22222
$$82$$ 0 0
$$83$$ 6.00000i 0.658586i 0.944228 + 0.329293i $$0.106810\pi$$
−0.944228 + 0.329293i $$0.893190\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ − 12.0000i − 1.28654i
$$88$$ 0 0
$$89$$ 6.00000 0.635999 0.317999 0.948091i $$-0.396989\pi$$
0.317999 + 0.948091i $$0.396989\pi$$
$$90$$ 0 0
$$91$$ −4.00000 −0.419314
$$92$$ 0 0
$$93$$ 8.00000i 0.829561i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 2.00000i 0.203069i 0.994832 + 0.101535i $$0.0323753\pi$$
−0.994832 + 0.101535i $$0.967625\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −6.00000 −0.597022 −0.298511 0.954406i $$-0.596490\pi$$
−0.298511 + 0.954406i $$0.596490\pi$$
$$102$$ 0 0
$$103$$ − 14.0000i − 1.37946i −0.724066 0.689730i $$-0.757729\pi$$
0.724066 0.689730i $$-0.242271\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 6.00000i 0.580042i 0.957020 + 0.290021i $$0.0936623\pi$$
−0.957020 + 0.290021i $$0.906338\pi$$
$$108$$ 0 0
$$109$$ 2.00000 0.191565 0.0957826 0.995402i $$-0.469465\pi$$
0.0957826 + 0.995402i $$0.469465\pi$$
$$110$$ 0 0
$$111$$ −4.00000 −0.379663
$$112$$ 0 0
$$113$$ 6.00000i 0.564433i 0.959351 + 0.282216i $$0.0910696\pi$$
−0.959351 + 0.282216i $$0.908930\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ − 2.00000i − 0.184900i
$$118$$ 0 0
$$119$$ 12.0000 1.10004
$$120$$ 0 0
$$121$$ −11.0000 −1.00000
$$122$$ 0 0
$$123$$ − 12.0000i − 1.08200i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 2.00000i 0.177471i 0.996055 + 0.0887357i $$0.0282826\pi$$
−0.996055 + 0.0887357i $$0.971717\pi$$
$$128$$ 0 0
$$129$$ −20.0000 −1.76090
$$130$$ 0 0
$$131$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$132$$ 0 0
$$133$$ − 8.00000i − 0.693688i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 18.0000i 1.53784i 0.639343 + 0.768922i $$0.279207\pi$$
−0.639343 + 0.768922i $$0.720793\pi$$
$$138$$ 0 0
$$139$$ −4.00000 −0.339276 −0.169638 0.985506i $$-0.554260\pi$$
−0.169638 + 0.985506i $$0.554260\pi$$
$$140$$ 0 0
$$141$$ −12.0000 −1.01058
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ − 6.00000i − 0.494872i
$$148$$ 0 0
$$149$$ −6.00000 −0.491539 −0.245770 0.969328i $$-0.579041\pi$$
−0.245770 + 0.969328i $$0.579041\pi$$
$$150$$ 0 0
$$151$$ 20.0000 1.62758 0.813788 0.581161i $$-0.197401\pi$$
0.813788 + 0.581161i $$0.197401\pi$$
$$152$$ 0 0
$$153$$ 6.00000i 0.485071i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 22.0000i 1.75579i 0.478852 + 0.877896i $$0.341053\pi$$
−0.478852 + 0.877896i $$0.658947\pi$$
$$158$$ 0 0
$$159$$ −12.0000 −0.951662
$$160$$ 0 0
$$161$$ 12.0000 0.945732
$$162$$ 0 0
$$163$$ − 10.0000i − 0.783260i −0.920123 0.391630i $$-0.871911\pi$$
0.920123 0.391630i $$-0.128089\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 18.0000i 1.39288i 0.717614 + 0.696441i $$0.245234\pi$$
−0.717614 + 0.696441i $$0.754766\pi$$
$$168$$ 0 0
$$169$$ 9.00000 0.692308
$$170$$ 0 0
$$171$$ 4.00000 0.305888
$$172$$ 0 0
$$173$$ − 6.00000i − 0.456172i −0.973641 0.228086i $$-0.926753\pi$$
0.973641 0.228086i $$-0.0732467\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ − 24.0000i − 1.80395i
$$178$$ 0 0
$$179$$ −12.0000 −0.896922 −0.448461 0.893802i $$-0.648028\pi$$
−0.448461 + 0.893802i $$0.648028\pi$$
$$180$$ 0 0
$$181$$ 10.0000 0.743294 0.371647 0.928374i $$-0.378793\pi$$
0.371647 + 0.928374i $$0.378793\pi$$
$$182$$ 0 0
$$183$$ 4.00000i 0.295689i
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 8.00000 0.581914
$$190$$ 0 0
$$191$$ −12.0000 −0.868290 −0.434145 0.900843i $$-0.642949\pi$$
−0.434145 + 0.900843i $$0.642949\pi$$
$$192$$ 0 0
$$193$$ − 26.0000i − 1.87152i −0.352636 0.935760i $$-0.614715\pi$$
0.352636 0.935760i $$-0.385285\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ − 18.0000i − 1.28245i −0.767354 0.641223i $$-0.778427\pi$$
0.767354 0.641223i $$-0.221573\pi$$
$$198$$ 0 0
$$199$$ −8.00000 −0.567105 −0.283552 0.958957i $$-0.591513\pi$$
−0.283552 + 0.958957i $$0.591513\pi$$
$$200$$ 0 0
$$201$$ −4.00000 −0.282138
$$202$$ 0 0
$$203$$ 12.0000i 0.842235i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 6.00000i 0.417029i
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 16.0000 1.10149 0.550743 0.834675i $$-0.314345\pi$$
0.550743 + 0.834675i $$0.314345\pi$$
$$212$$ 0 0
$$213$$ 24.0000i 1.64445i
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ − 8.00000i − 0.543075i
$$218$$ 0 0
$$219$$ −4.00000 −0.270295
$$220$$ 0 0
$$221$$ 12.0000 0.807207
$$222$$ 0 0
$$223$$ 10.0000i 0.669650i 0.942280 + 0.334825i $$0.108677\pi$$
−0.942280 + 0.334825i $$0.891323\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 6.00000i 0.398234i 0.979976 + 0.199117i $$0.0638074\pi$$
−0.979976 + 0.199117i $$0.936193\pi$$
$$228$$ 0 0
$$229$$ 14.0000 0.925146 0.462573 0.886581i $$-0.346926\pi$$
0.462573 + 0.886581i $$0.346926\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 6.00000i 0.393073i 0.980497 + 0.196537i $$0.0629694\pi$$
−0.980497 + 0.196537i $$0.937031\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 16.0000i 1.03931i
$$238$$ 0 0
$$239$$ 24.0000 1.55243 0.776215 0.630468i $$-0.217137\pi$$
0.776215 + 0.630468i $$0.217137\pi$$
$$240$$ 0 0
$$241$$ 14.0000 0.901819 0.450910 0.892570i $$-0.351100\pi$$
0.450910 + 0.892570i $$0.351100\pi$$
$$242$$ 0 0
$$243$$ 10.0000i 0.641500i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ − 8.00000i − 0.509028i
$$248$$ 0 0
$$249$$ 12.0000 0.760469
$$250$$ 0 0
$$251$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ − 6.00000i − 0.374270i −0.982334 0.187135i $$-0.940080\pi$$
0.982334 0.187135i $$-0.0599201\pi$$
$$258$$ 0 0
$$259$$ 4.00000 0.248548
$$260$$ 0 0
$$261$$ −6.00000 −0.371391
$$262$$ 0 0
$$263$$ 18.0000i 1.10993i 0.831875 + 0.554964i $$0.187268\pi$$
−0.831875 + 0.554964i $$0.812732\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ − 12.0000i − 0.734388i
$$268$$ 0 0
$$269$$ 18.0000 1.09748 0.548740 0.835993i $$-0.315108\pi$$
0.548740 + 0.835993i $$0.315108\pi$$
$$270$$ 0 0
$$271$$ 20.0000 1.21491 0.607457 0.794353i $$-0.292190\pi$$
0.607457 + 0.794353i $$0.292190\pi$$
$$272$$ 0 0
$$273$$ 8.00000i 0.484182i
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ − 26.0000i − 1.56219i −0.624413 0.781094i $$-0.714662\pi$$
0.624413 0.781094i $$-0.285338\pi$$
$$278$$ 0 0
$$279$$ 4.00000 0.239474
$$280$$ 0 0
$$281$$ 6.00000 0.357930 0.178965 0.983855i $$-0.442725\pi$$
0.178965 + 0.983855i $$0.442725\pi$$
$$282$$ 0 0
$$283$$ 14.0000i 0.832214i 0.909316 + 0.416107i $$0.136606\pi$$
−0.909316 + 0.416107i $$0.863394\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 12.0000i 0.708338i
$$288$$ 0 0
$$289$$ −19.0000 −1.11765
$$290$$ 0 0
$$291$$ 4.00000 0.234484
$$292$$ 0 0
$$293$$ − 30.0000i − 1.75262i −0.481749 0.876309i $$-0.659998\pi$$
0.481749 0.876309i $$-0.340002\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 12.0000 0.693978
$$300$$ 0 0
$$301$$ 20.0000 1.15278
$$302$$ 0 0
$$303$$ 12.0000i 0.689382i
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ − 2.00000i − 0.114146i −0.998370 0.0570730i $$-0.981823\pi$$
0.998370 0.0570730i $$-0.0181768\pi$$
$$308$$ 0 0
$$309$$ −28.0000 −1.59286
$$310$$ 0 0
$$311$$ 12.0000 0.680458 0.340229 0.940343i $$-0.389495\pi$$
0.340229 + 0.940343i $$0.389495\pi$$
$$312$$ 0 0
$$313$$ 22.0000i 1.24351i 0.783210 + 0.621757i $$0.213581\pi$$
−0.783210 + 0.621757i $$0.786419\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 6.00000i 0.336994i 0.985702 + 0.168497i $$0.0538913\pi$$
−0.985702 + 0.168497i $$0.946109\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 12.0000 0.669775
$$322$$ 0 0
$$323$$ 24.0000i 1.33540i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ − 4.00000i − 0.221201i
$$328$$ 0 0
$$329$$ 12.0000 0.661581
$$330$$ 0 0
$$331$$ −8.00000 −0.439720 −0.219860 0.975531i $$-0.570560\pi$$
−0.219860 + 0.975531i $$0.570560\pi$$
$$332$$ 0 0
$$333$$ 2.00000i 0.109599i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 2.00000i 0.108947i 0.998515 + 0.0544735i $$0.0173480\pi$$
−0.998515 + 0.0544735i $$0.982652\pi$$
$$338$$ 0 0
$$339$$ 12.0000 0.651751
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 20.0000i 1.07990i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 30.0000i 1.61048i 0.592946 + 0.805242i $$0.297965\pi$$
−0.592946 + 0.805242i $$0.702035\pi$$
$$348$$ 0 0
$$349$$ −10.0000 −0.535288 −0.267644 0.963518i $$-0.586245\pi$$
−0.267644 + 0.963518i $$0.586245\pi$$
$$350$$ 0 0
$$351$$ 8.00000 0.427008
$$352$$ 0 0
$$353$$ − 18.0000i − 0.958043i −0.877803 0.479022i $$-0.840992\pi$$
0.877803 0.479022i $$-0.159008\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ − 24.0000i − 1.27021i
$$358$$ 0 0
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 22.0000i 1.15470i
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ − 22.0000i − 1.14839i −0.818718 0.574195i $$-0.805315\pi$$
0.818718 0.574195i $$-0.194685\pi$$
$$368$$ 0 0
$$369$$ −6.00000 −0.312348
$$370$$ 0 0
$$371$$ 12.0000 0.623009
$$372$$ 0 0
$$373$$ 26.0000i 1.34623i 0.739538 + 0.673114i $$0.235044\pi$$
−0.739538 + 0.673114i $$0.764956\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 12.0000i 0.618031i
$$378$$ 0 0
$$379$$ −28.0000 −1.43826 −0.719132 0.694874i $$-0.755460\pi$$
−0.719132 + 0.694874i $$0.755460\pi$$
$$380$$ 0 0
$$381$$ 4.00000 0.204926
$$382$$ 0 0
$$383$$ − 6.00000i − 0.306586i −0.988181 0.153293i $$-0.951012\pi$$
0.988181 0.153293i $$-0.0489878\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 10.0000i 0.508329i
$$388$$ 0 0
$$389$$ −6.00000 −0.304212 −0.152106 0.988364i $$-0.548606\pi$$
−0.152106 + 0.988364i $$0.548606\pi$$
$$390$$ 0 0
$$391$$ −36.0000 −1.82060
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ − 2.00000i − 0.100377i −0.998740 0.0501886i $$-0.984018\pi$$
0.998740 0.0501886i $$-0.0159822\pi$$
$$398$$ 0 0
$$399$$ −16.0000 −0.801002
$$400$$ 0 0
$$401$$ −30.0000 −1.49813 −0.749064 0.662497i $$-0.769497\pi$$
−0.749064 + 0.662497i $$0.769497\pi$$
$$402$$ 0 0
$$403$$ − 8.00000i − 0.398508i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 34.0000 1.68119 0.840596 0.541663i $$-0.182205\pi$$
0.840596 + 0.541663i $$0.182205\pi$$
$$410$$ 0 0
$$411$$ 36.0000 1.77575
$$412$$ 0 0
$$413$$ 24.0000i 1.18096i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 8.00000i 0.391762i
$$418$$ 0 0
$$419$$ 36.0000 1.75872 0.879358 0.476162i $$-0.157972\pi$$
0.879358 + 0.476162i $$0.157972\pi$$
$$420$$ 0 0
$$421$$ −26.0000 −1.26716 −0.633581 0.773676i $$-0.718416\pi$$
−0.633581 + 0.773676i $$0.718416\pi$$
$$422$$ 0 0
$$423$$ 6.00000i 0.291730i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ − 4.00000i − 0.193574i
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 36.0000 1.73406 0.867029 0.498257i $$-0.166026\pi$$
0.867029 + 0.498257i $$0.166026\pi$$
$$432$$ 0 0
$$433$$ − 2.00000i − 0.0961139i −0.998845 0.0480569i $$-0.984697\pi$$
0.998845 0.0480569i $$-0.0153029\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 24.0000i 1.14808i
$$438$$ 0 0
$$439$$ −8.00000 −0.381819 −0.190910 0.981608i $$-0.561144\pi$$
−0.190910 + 0.981608i $$0.561144\pi$$
$$440$$ 0 0
$$441$$ −3.00000 −0.142857
$$442$$ 0 0
$$443$$ 6.00000i 0.285069i 0.989790 + 0.142534i $$0.0455251\pi$$
−0.989790 + 0.142534i $$0.954475\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 12.0000i 0.567581i
$$448$$ 0 0
$$449$$ −6.00000 −0.283158 −0.141579 0.989927i $$-0.545218\pi$$
−0.141579 + 0.989927i $$0.545218\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ − 40.0000i − 1.87936i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 26.0000i 1.21623i 0.793849 + 0.608114i $$0.208074\pi$$
−0.793849 + 0.608114i $$0.791926\pi$$
$$458$$ 0 0
$$459$$ −24.0000 −1.12022
$$460$$ 0 0
$$461$$ −30.0000 −1.39724 −0.698620 0.715493i $$-0.746202\pi$$
−0.698620 + 0.715493i $$0.746202\pi$$
$$462$$ 0 0
$$463$$ − 14.0000i − 0.650635i −0.945605 0.325318i $$-0.894529\pi$$
0.945605 0.325318i $$-0.105471\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 30.0000i 1.38823i 0.719862 + 0.694117i $$0.244205\pi$$
−0.719862 + 0.694117i $$0.755795\pi$$
$$468$$ 0 0
$$469$$ 4.00000 0.184703
$$470$$ 0 0
$$471$$ 44.0000 2.02741
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 6.00000i 0.274721i
$$478$$ 0 0
$$479$$ 24.0000 1.09659 0.548294 0.836286i $$-0.315277\pi$$
0.548294 + 0.836286i $$0.315277\pi$$
$$480$$ 0 0
$$481$$ 4.00000 0.182384
$$482$$ 0 0
$$483$$ − 24.0000i − 1.09204i
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 26.0000i 1.17817i 0.808070 + 0.589086i $$0.200512\pi$$
−0.808070 + 0.589086i $$0.799488\pi$$
$$488$$ 0 0
$$489$$ −20.0000 −0.904431
$$490$$ 0 0
$$491$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$492$$ 0 0
$$493$$ − 36.0000i − 1.62136i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ − 24.0000i − 1.07655i
$$498$$ 0 0
$$499$$ −4.00000 −0.179065 −0.0895323 0.995984i $$-0.528537\pi$$
−0.0895323 + 0.995984i $$0.528537\pi$$
$$500$$ 0 0
$$501$$ 36.0000 1.60836
$$502$$ 0 0
$$503$$ 18.0000i 0.802580i 0.915951 + 0.401290i $$0.131438\pi$$
−0.915951 + 0.401290i $$0.868562\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ − 18.0000i − 0.799408i
$$508$$ 0 0
$$509$$ 6.00000 0.265945 0.132973 0.991120i $$-0.457548\pi$$
0.132973 + 0.991120i $$0.457548\pi$$
$$510$$ 0 0
$$511$$ 4.00000 0.176950
$$512$$ 0 0
$$513$$ 16.0000i 0.706417i
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ −12.0000 −0.526742
$$520$$ 0 0
$$521$$ −6.00000 −0.262865 −0.131432 0.991325i $$-0.541958\pi$$
−0.131432 + 0.991325i $$0.541958\pi$$
$$522$$ 0 0
$$523$$ 14.0000i 0.612177i 0.952003 + 0.306089i $$0.0990204\pi$$
−0.952003 + 0.306089i $$0.900980\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 24.0000i 1.04546i
$$528$$ 0 0
$$529$$ −13.0000 −0.565217
$$530$$ 0 0
$$531$$ −12.0000 −0.520756
$$532$$ 0 0
$$533$$ 12.0000i 0.519778i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 24.0000i 1.03568i
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −14.0000 −0.601907 −0.300954 0.953639i $$-0.597305\pi$$
−0.300954 + 0.953639i $$0.597305\pi$$
$$542$$ 0 0
$$543$$ − 20.0000i − 0.858282i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ − 26.0000i − 1.11168i −0.831289 0.555840i $$-0.812397\pi$$
0.831289 0.555840i $$-0.187603\pi$$
$$548$$ 0 0
$$549$$ 2.00000 0.0853579
$$550$$ 0 0
$$551$$ −24.0000 −1.02243
$$552$$ 0 0
$$553$$ − 16.0000i − 0.680389i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 30.0000i 1.27114i 0.772043 + 0.635570i $$0.219235\pi$$
−0.772043 + 0.635570i $$0.780765\pi$$
$$558$$ 0 0
$$559$$ 20.0000 0.845910
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ − 18.0000i − 0.758610i −0.925272 0.379305i $$-0.876163\pi$$
0.925272 0.379305i $$-0.123837\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ − 22.0000i − 0.923913i
$$568$$ 0 0
$$569$$ −30.0000 −1.25767 −0.628833 0.777541i $$-0.716467\pi$$
−0.628833 + 0.777541i $$0.716467\pi$$
$$570$$ 0 0
$$571$$ −8.00000 −0.334790 −0.167395 0.985890i $$-0.553535\pi$$
−0.167395 + 0.985890i $$0.553535\pi$$
$$572$$ 0 0
$$573$$ 24.0000i 1.00261i
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ − 22.0000i − 0.915872i −0.888985 0.457936i $$-0.848589\pi$$
0.888985 0.457936i $$-0.151411\pi$$
$$578$$ 0 0
$$579$$ −52.0000 −2.16105
$$580$$ 0 0
$$581$$ −12.0000 −0.497844
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 6.00000i 0.247647i 0.992304 + 0.123823i $$0.0395156\pi$$
−0.992304 + 0.123823i $$0.960484\pi$$
$$588$$ 0 0
$$589$$ 16.0000 0.659269
$$590$$ 0 0
$$591$$ −36.0000 −1.48084
$$592$$ 0 0
$$593$$ − 18.0000i − 0.739171i −0.929197 0.369586i $$-0.879500\pi$$
0.929197 0.369586i $$-0.120500\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 16.0000i 0.654836i
$$598$$ 0 0
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ −10.0000 −0.407909 −0.203954 0.978980i $$-0.565379\pi$$
−0.203954 + 0.978980i $$0.565379\pi$$
$$602$$ 0 0
$$603$$ 2.00000i 0.0814463i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ − 22.0000i − 0.892952i −0.894795 0.446476i $$-0.852679\pi$$
0.894795 0.446476i $$-0.147321\pi$$
$$608$$ 0 0
$$609$$ 24.0000 0.972529
$$610$$ 0 0
$$611$$ 12.0000 0.485468
$$612$$ 0 0
$$613$$ 2.00000i 0.0807792i 0.999184 + 0.0403896i $$0.0128599\pi$$
−0.999184 + 0.0403896i $$0.987140\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ − 6.00000i − 0.241551i −0.992680 0.120775i $$-0.961462\pi$$
0.992680 0.120775i $$-0.0385381\pi$$
$$618$$ 0 0
$$619$$ 20.0000 0.803868 0.401934 0.915669i $$-0.368338\pi$$
0.401934 + 0.915669i $$0.368338\pi$$
$$620$$ 0 0
$$621$$ −24.0000 −0.963087
$$622$$ 0 0
$$623$$ 12.0000i 0.480770i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −12.0000 −0.478471
$$630$$ 0 0
$$631$$ −28.0000 −1.11466 −0.557331 0.830290i $$-0.688175\pi$$
−0.557331 + 0.830290i $$0.688175\pi$$
$$632$$ 0 0
$$633$$ − 32.0000i − 1.27189i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 6.00000i 0.237729i
$$638$$ 0 0
$$639$$ 12.0000 0.474713
$$640$$ 0 0
$$641$$ −18.0000 −0.710957 −0.355479 0.934684i $$-0.615682\pi$$
−0.355479 + 0.934684i $$0.615682\pi$$
$$642$$ 0 0
$$643$$ 14.0000i 0.552106i 0.961142 + 0.276053i $$0.0890266\pi$$
−0.961142 + 0.276053i $$0.910973\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 42.0000i 1.65119i 0.564263 + 0.825595i $$0.309160\pi$$
−0.564263 + 0.825595i $$0.690840\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ −16.0000 −0.627089
$$652$$ 0 0
$$653$$ 42.0000i 1.64359i 0.569785 + 0.821794i $$0.307026\pi$$
−0.569785 + 0.821794i $$0.692974\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 2.00000i 0.0780274i
$$658$$ 0 0
$$659$$ 36.0000 1.40236 0.701180 0.712984i $$-0.252657\pi$$
0.701180 + 0.712984i $$0.252657\pi$$
$$660$$ 0 0
$$661$$ 22.0000 0.855701 0.427850 0.903850i $$-0.359271\pi$$
0.427850 + 0.903850i $$0.359271\pi$$
$$662$$ 0 0
$$663$$ − 24.0000i − 0.932083i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ − 36.0000i − 1.39393i
$$668$$ 0 0
$$669$$ 20.0000 0.773245
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 46.0000i 1.77317i 0.462566 + 0.886585i $$0.346929\pi$$
−0.462566 + 0.886585i $$0.653071\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ − 18.0000i − 0.691796i −0.938272 0.345898i $$-0.887574\pi$$
0.938272 0.345898i $$-0.112426\pi$$
$$678$$ 0 0
$$679$$ −4.00000 −0.153506
$$680$$ 0 0
$$681$$ 12.0000 0.459841
$$682$$ 0 0
$$683$$ − 42.0000i − 1.60709i −0.595247 0.803543i $$-0.702946\pi$$
0.595247 0.803543i $$-0.297054\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ − 28.0000i − 1.06827i
$$688$$ 0 0
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ −8.00000 −0.304334 −0.152167 0.988355i $$-0.548625\pi$$
−0.152167 + 0.988355i $$0.548625\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ − 36.0000i − 1.36360i
$$698$$ 0 0
$$699$$ 12.0000 0.453882
$$700$$ 0 0
$$701$$ 30.0000 1.13308 0.566542 0.824033i $$-0.308281\pi$$
0.566542 + 0.824033i $$0.308281\pi$$
$$702$$ 0 0
$$703$$ 8.00000i 0.301726i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ − 12.0000i − 0.451306i
$$708$$ 0 0
$$709$$ −34.0000 −1.27690 −0.638448 0.769665i $$-0.720423\pi$$
−0.638448 + 0.769665i $$0.720423\pi$$
$$710$$ 0 0
$$711$$ 8.00000 0.300023
$$712$$ 0 0
$$713$$ 24.0000i 0.898807i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ − 48.0000i − 1.79259i
$$718$$ 0 0
$$719$$ 24.0000 0.895049 0.447524 0.894272i $$-0.352306\pi$$
0.447524 + 0.894272i $$0.352306\pi$$
$$720$$ 0 0
$$721$$ 28.0000 1.04277
$$722$$ 0 0
$$723$$ − 28.0000i − 1.04133i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ − 46.0000i − 1.70605i −0.521874 0.853023i $$-0.674767\pi$$
0.521874 0.853023i $$-0.325233\pi$$
$$728$$ 0 0
$$729$$ −13.0000 −0.481481
$$730$$ 0 0
$$731$$ −60.0000 −2.21918
$$732$$ 0 0
$$733$$ − 22.0000i − 0.812589i −0.913742 0.406294i $$-0.866821\pi$$
0.913742 0.406294i $$-0.133179\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 20.0000 0.735712 0.367856 0.929883i $$-0.380092\pi$$
0.367856 + 0.929883i $$0.380092\pi$$
$$740$$ 0 0
$$741$$ −16.0000 −0.587775
$$742$$ 0 0
$$743$$ − 6.00000i − 0.220119i −0.993925 0.110059i $$-0.964896\pi$$
0.993925 0.110059i $$-0.0351041\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ − 6.00000i − 0.219529i
$$748$$ 0 0
$$749$$ −12.0000 −0.438470
$$750$$ 0 0
$$751$$ −4.00000 −0.145962 −0.0729810 0.997333i $$-0.523251\pi$$
−0.0729810 + 0.997333i $$0.523251\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 22.0000i 0.799604i 0.916602 + 0.399802i $$0.130921\pi$$
−0.916602 + 0.399802i $$0.869079\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 42.0000 1.52250 0.761249 0.648459i $$-0.224586\pi$$
0.761249 + 0.648459i $$0.224586\pi$$
$$762$$ 0 0
$$763$$ 4.00000i 0.144810i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 24.0000i 0.866590i
$$768$$ 0 0
$$769$$ −2.00000 −0.0721218 −0.0360609 0.999350i $$-0.511481\pi$$
−0.0360609 + 0.999350i $$0.511481\pi$$
$$770$$ 0 0
$$771$$ −12.0000 −0.432169
$$772$$ 0 0
$$773$$ − 30.0000i − 1.07903i −0.841978 0.539513i $$-0.818609\pi$$
0.841978 0.539513i $$-0.181391\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ − 8.00000i − 0.286998i
$$778$$ 0 0
$$779$$ −24.0000 −0.859889
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ − 24.0000i − 0.857690i
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ − 26.0000i − 0.926800i −0.886149 0.463400i $$-0.846629\pi$$
0.886149 0.463400i $$-0.153371\pi$$
$$788$$ 0 0
$$789$$ 36.0000 1.28163
$$790$$ 0 0
$$791$$ −12.0000 −0.426671
$$792$$ 0 0
$$793$$ − 4.00000i − 0.142044i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ − 42.0000i − 1.48772i −0.668338 0.743858i $$-0.732994\pi$$
0.668338 0.743858i $$-0.267006\pi$$
$$798$$ 0 0
$$799$$ −36.0000 −1.27359
$$800$$ 0 0
$$801$$ −6.00000 −0.212000
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ − 36.0000i − 1.26726i
$$808$$ 0 0
$$809$$ 6.00000 0.210949 0.105474 0.994422i $$-0.466364\pi$$
0.105474 + 0.994422i $$0.466364\pi$$
$$810$$ 0 0
$$811$$ 16.0000 0.561836 0.280918 0.959732i $$-0.409361\pi$$
0.280918 + 0.959732i $$0.409361\pi$$
$$812$$ 0 0
$$813$$ − 40.0000i − 1.40286i
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 40.0000i 1.39942i
$$818$$ 0 0
$$819$$ 4.00000 0.139771
$$820$$ 0 0
$$821$$ 54.0000 1.88461 0.942306 0.334751i $$-0.108652\pi$$
0.942306 + 0.334751i $$0.108652\pi$$
$$822$$ 0 0
$$823$$ − 38.0000i − 1.32460i −0.749240 0.662298i $$-0.769581\pi$$
0.749240 0.662298i $$-0.230419\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 30.0000i 1.04320i 0.853189 + 0.521601i $$0.174665\pi$$
−0.853189 + 0.521601i $$0.825335\pi$$
$$828$$ 0 0
$$829$$ 2.00000 0.0694629 0.0347314 0.999397i $$-0.488942\pi$$
0.0347314 + 0.999397i $$0.488942\pi$$
$$830$$ 0 0
$$831$$ −52.0000 −1.80386
$$832$$ 0 0
$$833$$ − 18.0000i − 0.623663i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 16.0000i 0.553041i
$$838$$ 0 0
$$839$$ 48.0000 1.65714 0.828572 0.559883i $$-0.189154\pi$$
0.828572 + 0.559883i $$0.189154\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ − 12.0000i − 0.413302i
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ − 22.0000i − 0.755929i
$$848$$ 0 0
$$849$$ 28.0000 0.960958
$$850$$ 0 0
$$851$$ −12.0000 −0.411355
$$852$$ 0 0
$$853$$ 50.0000i 1.71197i 0.517003 + 0.855984i $$0.327048\pi$$
−0.517003 + 0.855984i $$0.672952\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 18.0000i 0.614868i 0.951569 + 0.307434i $$0.0994704\pi$$
−0.951569 + 0.307434i $$0.900530\pi$$
$$858$$ 0 0
$$859$$ −4.00000 −0.136478 −0.0682391 0.997669i $$-0.521738\pi$$
−0.0682391 + 0.997669i $$0.521738\pi$$
$$860$$ 0 0
$$861$$ 24.0000 0.817918
$$862$$ 0 0
$$863$$ − 6.00000i − 0.204242i −0.994772 0.102121i $$-0.967437\pi$$
0.994772 0.102121i $$-0.0325630\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 38.0000i 1.29055i
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 4.00000 0.135535
$$872$$ 0 0
$$873$$ − 2.00000i − 0.0676897i
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ − 26.0000i − 0.877958i −0.898497 0.438979i $$-0.855340\pi$$
0.898497 0.438979i $$-0.144660\pi$$
$$878$$ 0 0
$$879$$ −60.0000 −2.02375
$$880$$ 0 0
$$881$$ −18.0000 −0.606435 −0.303218 0.952921i $$-0.598061\pi$$
−0.303218 + 0.952921i $$0.598061\pi$$
$$882$$ 0 0
$$883$$ 14.0000i 0.471138i 0.971858 + 0.235569i $$0.0756953\pi$$
−0.971858 + 0.235569i $$0.924305\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 18.0000i 0.604381i 0.953248 + 0.302190i $$0.0977178\pi$$
−0.953248 + 0.302190i $$0.902282\pi$$
$$888$$ 0 0
$$889$$ −4.00000 −0.134156
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 24.0000i 0.803129i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ − 24.0000i − 0.801337i
$$898$$ 0 0
$$899$$ −24.0000 −0.800445
$$900$$ 0 0
$$901$$ −36.0000 −1.19933
$$902$$ 0 0
$$903$$ − 40.0000i − 1.33112i
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ 46.0000i 1.52740i 0.645568 + 0.763702i $$0.276621\pi$$
−0.645568 + 0.763702i $$0.723379\pi$$
$$908$$ 0 0
$$909$$ 6.00000 0.199007
$$910$$ 0 0
$$911$$ 12.0000 0.397578 0.198789 0.980042i $$-0.436299\pi$$
0.198789 + 0.980042i $$0.436299\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 16.0000 0.527791 0.263896 0.964551i $$-0.414993\pi$$
0.263896 + 0.964551i $$0.414993\pi$$
$$920$$ 0 0
$$921$$ −4.00000 −0.131804
$$922$$ 0 0
$$923$$ − 24.0000i − 0.789970i
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 14.0000i 0.459820i
$$928$$ 0 0
$$929$$ 42.0000 1.37798 0.688988 0.724773i $$-0.258055\pi$$
0.688988 + 0.724773i $$0.258055\pi$$
$$930$$ 0 0
$$931$$ −12.0000 −0.393284
$$932$$ 0 0
$$933$$ − 24.0000i − 0.785725i
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ − 22.0000i − 0.718709i −0.933201 0.359354i $$-0.882997\pi$$
0.933201 0.359354i $$-0.117003\pi$$
$$938$$ 0 0
$$939$$ 44.0000 1.43589
$$940$$ 0 0
$$941$$ 18.0000 0.586783 0.293392 0.955992i $$-0.405216\pi$$
0.293392 + 0.955992i $$0.405216\pi$$
$$942$$ 0 0
$$943$$ − 36.0000i − 1.17232i
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ − 18.0000i − 0.584921i −0.956278 0.292461i $$-0.905526\pi$$
0.956278 0.292461i $$-0.0944741\pi$$
$$948$$ 0 0
$$949$$ 4.00000 0.129845
$$950$$ 0 0
$$951$$ 12.0000 0.389127
$$952$$ 0 0
$$953$$ 6.00000i 0.194359i 0.995267 + 0.0971795i $$0.0309821\pi$$
−0.995267 + 0.0971795i $$0.969018\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −36.0000 −1.16250
$$960$$ 0 0
$$961$$ −15.0000 −0.483871
$$962$$ 0 0
$$963$$ − 6.00000i − 0.193347i
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ − 22.0000i − 0.707472i −0.935345 0.353736i $$-0.884911\pi$$
0.935345 0.353736i $$-0.115089\pi$$
$$968$$ 0 0
$$969$$ 48.0000 1.54198
$$970$$ 0 0
$$971$$ 24.0000 0.770197 0.385098 0.922876i $$-0.374168\pi$$
0.385098 + 0.922876i $$0.374168\pi$$
$$972$$ 0 0
$$973$$ − 8.00000i − 0.256468i
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 18.0000i 0.575871i 0.957650 + 0.287936i $$0.0929689\pi$$
−0.957650 + 0.287936i $$0.907031\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ −2.00000 −0.0638551
$$982$$ 0 0
$$983$$ 18.0000i 0.574111i 0.957914 + 0.287055i $$0.0926764\pi$$
−0.957914 + 0.287055i $$0.907324\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ − 24.0000i − 0.763928i
$$988$$ 0 0
$$989$$ −60.0000 −1.90789
$$990$$ 0 0
$$991$$ −4.00000 −0.127064 −0.0635321 0.997980i $$-0.520237\pi$$
−0.0635321 + 0.997980i $$0.520237\pi$$
$$992$$ 0 0
$$993$$ 16.0000i 0.507745i
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ − 26.0000i − 0.823428i −0.911313 0.411714i $$-0.864930\pi$$
0.911313 0.411714i $$-0.135070\pi$$
$$998$$ 0 0
$$999$$ −8.00000 −0.253109
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.2.c.d.449.1 2
4.3 odd 2 1600.2.c.e.449.2 2
5.2 odd 4 1600.2.a.c.1.1 1
5.3 odd 4 320.2.a.f.1.1 1
5.4 even 2 inner 1600.2.c.d.449.2 2
8.3 odd 2 400.2.c.b.49.1 2
8.5 even 2 100.2.c.a.49.2 2
15.8 even 4 2880.2.a.m.1.1 1
20.3 even 4 320.2.a.a.1.1 1
20.7 even 4 1600.2.a.w.1.1 1
20.19 odd 2 1600.2.c.e.449.1 2
24.5 odd 2 900.2.d.c.649.2 2
24.11 even 2 3600.2.f.j.2449.1 2
40.3 even 4 80.2.a.b.1.1 1
40.13 odd 4 20.2.a.a.1.1 1
40.19 odd 2 400.2.c.b.49.2 2
40.27 even 4 400.2.a.c.1.1 1
40.29 even 2 100.2.c.a.49.1 2
40.37 odd 4 100.2.a.a.1.1 1
56.13 odd 2 4900.2.e.f.2549.1 2
60.23 odd 4 2880.2.a.f.1.1 1
80.3 even 4 1280.2.d.g.641.1 2
80.13 odd 4 1280.2.d.c.641.2 2
80.43 even 4 1280.2.d.g.641.2 2
80.53 odd 4 1280.2.d.c.641.1 2
120.29 odd 2 900.2.d.c.649.1 2
120.53 even 4 180.2.a.a.1.1 1
120.59 even 2 3600.2.f.j.2449.2 2
120.77 even 4 900.2.a.b.1.1 1
120.83 odd 4 720.2.a.h.1.1 1
120.107 odd 4 3600.2.a.be.1.1 1
280.13 even 4 980.2.a.h.1.1 1
280.53 odd 12 980.2.i.i.961.1 2
280.69 odd 2 4900.2.e.f.2549.2 2
280.83 odd 4 3920.2.a.h.1.1 1
280.93 odd 12 980.2.i.i.361.1 2
280.173 even 12 980.2.i.c.361.1 2
280.213 even 12 980.2.i.c.961.1 2
280.237 even 4 4900.2.a.e.1.1 1
360.13 odd 12 1620.2.i.h.541.1 2
360.133 odd 12 1620.2.i.h.1081.1 2
360.173 even 12 1620.2.i.b.1081.1 2
360.293 even 12 1620.2.i.b.541.1 2
440.43 odd 4 9680.2.a.ba.1.1 1
440.373 even 4 2420.2.a.a.1.1 1
520.213 even 4 3380.2.f.b.3041.2 2
520.333 even 4 3380.2.f.b.3041.1 2
520.493 odd 4 3380.2.a.c.1.1 1
680.13 odd 4 5780.2.c.a.5201.1 2
680.293 odd 4 5780.2.c.a.5201.2 2
680.373 odd 4 5780.2.a.f.1.1 1
760.493 even 4 7220.2.a.f.1.1 1
840.293 odd 4 8820.2.a.g.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
20.2.a.a.1.1 1 40.13 odd 4
80.2.a.b.1.1 1 40.3 even 4
100.2.a.a.1.1 1 40.37 odd 4
100.2.c.a.49.1 2 40.29 even 2
100.2.c.a.49.2 2 8.5 even 2
180.2.a.a.1.1 1 120.53 even 4
320.2.a.a.1.1 1 20.3 even 4
320.2.a.f.1.1 1 5.3 odd 4
400.2.a.c.1.1 1 40.27 even 4
400.2.c.b.49.1 2 8.3 odd 2
400.2.c.b.49.2 2 40.19 odd 2
720.2.a.h.1.1 1 120.83 odd 4
900.2.a.b.1.1 1 120.77 even 4
900.2.d.c.649.1 2 120.29 odd 2
900.2.d.c.649.2 2 24.5 odd 2
980.2.a.h.1.1 1 280.13 even 4
980.2.i.c.361.1 2 280.173 even 12
980.2.i.c.961.1 2 280.213 even 12
980.2.i.i.361.1 2 280.93 odd 12
980.2.i.i.961.1 2 280.53 odd 12
1280.2.d.c.641.1 2 80.53 odd 4
1280.2.d.c.641.2 2 80.13 odd 4
1280.2.d.g.641.1 2 80.3 even 4
1280.2.d.g.641.2 2 80.43 even 4
1600.2.a.c.1.1 1 5.2 odd 4
1600.2.a.w.1.1 1 20.7 even 4
1600.2.c.d.449.1 2 1.1 even 1 trivial
1600.2.c.d.449.2 2 5.4 even 2 inner
1600.2.c.e.449.1 2 20.19 odd 2
1600.2.c.e.449.2 2 4.3 odd 2
1620.2.i.b.541.1 2 360.293 even 12
1620.2.i.b.1081.1 2 360.173 even 12
1620.2.i.h.541.1 2 360.13 odd 12
1620.2.i.h.1081.1 2 360.133 odd 12
2420.2.a.a.1.1 1 440.373 even 4
2880.2.a.f.1.1 1 60.23 odd 4
2880.2.a.m.1.1 1 15.8 even 4
3380.2.a.c.1.1 1 520.493 odd 4
3380.2.f.b.3041.1 2 520.333 even 4
3380.2.f.b.3041.2 2 520.213 even 4
3600.2.a.be.1.1 1 120.107 odd 4
3600.2.f.j.2449.1 2 24.11 even 2
3600.2.f.j.2449.2 2 120.59 even 2
3920.2.a.h.1.1 1 280.83 odd 4
4900.2.a.e.1.1 1 280.237 even 4
4900.2.e.f.2549.1 2 56.13 odd 2
4900.2.e.f.2549.2 2 280.69 odd 2
5780.2.a.f.1.1 1 680.373 odd 4
5780.2.c.a.5201.1 2 680.13 odd 4
5780.2.c.a.5201.2 2 680.293 odd 4
7220.2.a.f.1.1 1 760.493 even 4
8820.2.a.g.1.1 1 840.293 odd 4
9680.2.a.ba.1.1 1 440.43 odd 4