Properties

Label 1600.2.c.c.449.2
Level $1600$
Weight $2$
Character 1600.449
Analytic conductor $12.776$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(449,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1600.449
Dual form 1600.2.c.c.449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{3} +2.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+2.00000i q^{3} +2.00000i q^{7} -1.00000 q^{9} -4.00000 q^{11} -6.00000i q^{13} +2.00000i q^{17} -8.00000 q^{19} -4.00000 q^{21} -6.00000i q^{23} +4.00000i q^{27} -2.00000 q^{29} -4.00000 q^{31} -8.00000i q^{33} -2.00000i q^{37} +12.0000 q^{39} -10.0000 q^{41} +2.00000i q^{43} +2.00000i q^{47} +3.00000 q^{49} -4.00000 q^{51} +2.00000i q^{53} -16.0000i q^{57} -2.00000 q^{61} -2.00000i q^{63} -6.00000i q^{67} +12.0000 q^{69} +12.0000 q^{71} -10.0000i q^{73} -8.00000i q^{77} -8.00000 q^{79} -11.0000 q^{81} +10.0000i q^{83} -4.00000i q^{87} +6.00000 q^{89} +12.0000 q^{91} -8.00000i q^{93} +10.0000i q^{97} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} - 8 q^{11} - 16 q^{19} - 8 q^{21} - 4 q^{29} - 8 q^{31} + 24 q^{39} - 20 q^{41} + 6 q^{49} - 8 q^{51} - 4 q^{61} + 24 q^{69} + 24 q^{71} - 16 q^{79} - 22 q^{81} + 12 q^{89} + 24 q^{91} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000i 1.15470i 0.816497 + 0.577350i \(0.195913\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) − 6.00000i − 1.66410i −0.554700 0.832050i \(-0.687167\pi\)
0.554700 0.832050i \(-0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) − 6.00000i − 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) − 8.00000i − 1.39262i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 12.0000 1.92154
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 2.00000i 0.304997i 0.988304 + 0.152499i \(0.0487319\pi\)
−0.988304 + 0.152499i \(0.951268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.00000i 0.291730i 0.989305 + 0.145865i \(0.0465965\pi\)
−0.989305 + 0.145865i \(0.953403\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 16.0000i − 2.11925i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) − 2.00000i − 0.251976i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 6.00000i − 0.733017i −0.930415 0.366508i \(-0.880553\pi\)
0.930415 0.366508i \(-0.119447\pi\)
\(68\) 0 0
\(69\) 12.0000 1.44463
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) − 10.0000i − 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 8.00000i − 0.911685i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 10.0000i 1.09764i 0.835940 + 0.548821i \(0.184923\pi\)
−0.835940 + 0.548821i \(0.815077\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 4.00000i − 0.428845i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) − 8.00000i − 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) 0 0
\(103\) 2.00000i 0.197066i 0.995134 + 0.0985329i \(0.0314150\pi\)
−0.995134 + 0.0985329i \(0.968585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 6.00000i − 0.580042i −0.957020 0.290021i \(-0.906338\pi\)
0.957020 0.290021i \(-0.0936623\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00000i 0.554700i
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) − 20.0000i − 1.80334i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 6.00000i − 0.532414i −0.963916 0.266207i \(-0.914230\pi\)
0.963916 0.266207i \(-0.0857705\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) − 16.0000i − 1.38738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000i 0.170872i 0.996344 + 0.0854358i \(0.0272282\pi\)
−0.996344 + 0.0854358i \(0.972772\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) 24.0000i 2.00698i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.00000i 0.494872i
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −20.0000 −1.62758 −0.813788 0.581161i \(-0.802599\pi\)
−0.813788 + 0.581161i \(0.802599\pi\)
\(152\) 0 0
\(153\) − 2.00000i − 0.161690i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 10.0000i − 0.798087i −0.916932 0.399043i \(-0.869342\pi\)
0.916932 0.399043i \(-0.130658\pi\)
\(158\) 0 0
\(159\) −4.00000 −0.317221
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) − 6.00000i − 0.469956i −0.972001 0.234978i \(-0.924498\pi\)
0.972001 0.234978i \(-0.0755019\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 14.0000i − 1.08335i −0.840587 0.541676i \(-0.817790\pi\)
0.840587 0.541676i \(-0.182210\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 8.00000 0.611775
\(172\) 0 0
\(173\) − 6.00000i − 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) − 4.00000i − 0.295689i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 8.00000i − 0.585018i
\(188\) 0 0
\(189\) −8.00000 −0.581914
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) − 2.00000i − 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.0000i 1.56744i 0.621117 + 0.783718i \(0.286679\pi\)
−0.621117 + 0.783718i \(0.713321\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) 0 0
\(203\) − 4.00000i − 0.280745i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) 32.0000 2.21349
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 24.0000i 1.64445i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 8.00000i − 0.543075i
\(218\) 0 0
\(219\) 20.0000 1.35147
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 2.00000i 0.133930i 0.997755 + 0.0669650i \(0.0213316\pi\)
−0.997755 + 0.0669650i \(0.978668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0000i 1.19470i 0.801980 + 0.597351i \(0.203780\pi\)
−0.801980 + 0.597351i \(0.796220\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 16.0000 1.05272
\(232\) 0 0
\(233\) − 2.00000i − 0.131024i −0.997852 0.0655122i \(-0.979132\pi\)
0.997852 0.0655122i \(-0.0208681\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 16.0000i − 1.03931i
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) − 10.0000i − 0.641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 48.0000i 3.05417i
\(248\) 0 0
\(249\) −20.0000 −1.26745
\(250\) 0 0
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 24.0000i 1.50887i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 26.0000i 1.62184i 0.585160 + 0.810918i \(0.301032\pi\)
−0.585160 + 0.810918i \(0.698968\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 2.00000i 0.123325i 0.998097 + 0.0616626i \(0.0196403\pi\)
−0.998097 + 0.0616626i \(0.980360\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 12.0000i 0.734388i
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) 0 0
\(273\) 24.0000i 1.45255i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 26.0000i 1.54554i 0.634686 + 0.772770i \(0.281129\pi\)
−0.634686 + 0.772770i \(0.718871\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 20.0000i − 1.18056i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −20.0000 −1.17242
\(292\) 0 0
\(293\) 18.0000i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 16.0000i − 0.928414i
\(298\) 0 0
\(299\) −36.0000 −2.08193
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) − 28.0000i − 1.60856i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 22.0000i − 1.25561i −0.778372 0.627803i \(-0.783954\pi\)
0.778372 0.627803i \(-0.216046\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) −28.0000 −1.58773 −0.793867 0.608091i \(-0.791935\pi\)
−0.793867 + 0.608091i \(0.791935\pi\)
\(312\) 0 0
\(313\) 6.00000i 0.339140i 0.985518 + 0.169570i \(0.0542379\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2.00000i − 0.112331i −0.998421 0.0561656i \(-0.982113\pi\)
0.998421 0.0561656i \(-0.0178875\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) − 16.0000i − 0.890264i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 28.0000i − 1.54840i
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 14.0000i − 0.762629i −0.924445 0.381314i \(-0.875472\pi\)
0.924445 0.381314i \(-0.124528\pi\)
\(338\) 0 0
\(339\) −12.0000 −0.651751
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.0000i 0.966291i 0.875540 + 0.483145i \(0.160506\pi\)
−0.875540 + 0.483145i \(0.839494\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 24.0000 1.28103
\(352\) 0 0
\(353\) 30.0000i 1.59674i 0.602168 + 0.798369i \(0.294304\pi\)
−0.602168 + 0.798369i \(0.705696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 8.00000i − 0.423405i
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 0 0
\(363\) 10.0000i 0.524864i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 18.0000i 0.939592i 0.882775 + 0.469796i \(0.155673\pi\)
−0.882775 + 0.469796i \(0.844327\pi\)
\(368\) 0 0
\(369\) 10.0000 0.520579
\(370\) 0 0
\(371\) −4.00000 −0.207670
\(372\) 0 0
\(373\) 10.0000i 0.517780i 0.965907 + 0.258890i \(0.0833568\pi\)
−0.965907 + 0.258890i \(0.916643\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000i 0.618031i
\(378\) 0 0
\(379\) −24.0000 −1.23280 −0.616399 0.787434i \(-0.711409\pi\)
−0.616399 + 0.787434i \(0.711409\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) 0 0
\(383\) − 14.0000i − 0.715367i −0.933843 0.357683i \(-0.883567\pi\)
0.933843 0.357683i \(-0.116433\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 2.00000i − 0.101666i
\(388\) 0 0
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 8.00000i 0.403547i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 26.0000i − 1.30490i −0.757831 0.652451i \(-0.773741\pi\)
0.757831 0.652451i \(-0.226259\pi\)
\(398\) 0 0
\(399\) 32.0000 1.60200
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) 24.0000i 1.19553i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.00000i 0.396545i
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) −4.00000 −0.197305
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 32.0000i 1.56705i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) − 2.00000i − 0.0972433i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 4.00000i − 0.193574i
\(428\) 0 0
\(429\) −48.0000 −2.31746
\(430\) 0 0
\(431\) 20.0000 0.963366 0.481683 0.876346i \(-0.340026\pi\)
0.481683 + 0.876346i \(0.340026\pi\)
\(432\) 0 0
\(433\) 22.0000i 1.05725i 0.848855 + 0.528626i \(0.177293\pi\)
−0.848855 + 0.528626i \(0.822707\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 48.0000i 2.29615i
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 18.0000i 0.855206i 0.903967 + 0.427603i \(0.140642\pi\)
−0.903967 + 0.427603i \(0.859358\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 20.0000i 0.945968i
\(448\) 0 0
\(449\) −22.0000 −1.03824 −0.519122 0.854700i \(-0.673741\pi\)
−0.519122 + 0.854700i \(0.673741\pi\)
\(450\) 0 0
\(451\) 40.0000 1.88353
\(452\) 0 0
\(453\) − 40.0000i − 1.87936i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 6.00000i − 0.280668i −0.990104 0.140334i \(-0.955182\pi\)
0.990104 0.140334i \(-0.0448177\pi\)
\(458\) 0 0
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) − 38.0000i − 1.76601i −0.469364 0.883005i \(-0.655517\pi\)
0.469364 0.883005i \(-0.344483\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 6.00000i − 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) 20.0000 0.921551
\(472\) 0 0
\(473\) − 8.00000i − 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 2.00000i − 0.0915737i
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 0 0
\(483\) 24.0000i 1.09204i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 38.0000i − 1.72194i −0.508652 0.860972i \(-0.669856\pi\)
0.508652 0.860972i \(-0.330144\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) − 4.00000i − 0.180151i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 24.0000i 1.07655i
\(498\) 0 0
\(499\) 40.0000 1.79065 0.895323 0.445418i \(-0.146945\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(500\) 0 0
\(501\) 28.0000 1.25095
\(502\) 0 0
\(503\) − 14.0000i − 0.624229i −0.950044 0.312115i \(-0.898963\pi\)
0.950044 0.312115i \(-0.101037\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 46.0000i − 2.04293i
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 20.0000 0.884748
\(512\) 0 0
\(513\) − 32.0000i − 1.41283i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 8.00000i − 0.351840i
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) − 22.0000i − 0.961993i −0.876723 0.480996i \(-0.840275\pi\)
0.876723 0.480996i \(-0.159725\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 8.00000i − 0.348485i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 60.0000i 2.59889i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) 36.0000i 1.54491i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 14.0000i − 0.598597i −0.954160 0.299298i \(-0.903247\pi\)
0.954160 0.299298i \(-0.0967526\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 16.0000 0.681623
\(552\) 0 0
\(553\) − 16.0000i − 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 46.0000i 1.94908i 0.224208 + 0.974541i \(0.428020\pi\)
−0.224208 + 0.974541i \(0.571980\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) 16.0000 0.675521
\(562\) 0 0
\(563\) − 30.0000i − 1.26435i −0.774826 0.632175i \(-0.782163\pi\)
0.774826 0.632175i \(-0.217837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 22.0000i − 0.923913i
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) 8.00000i 0.334205i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 38.0000i − 1.58196i −0.611842 0.790980i \(-0.709571\pi\)
0.611842 0.790980i \(-0.290429\pi\)
\(578\) 0 0
\(579\) 4.00000 0.166234
\(580\) 0 0
\(581\) −20.0000 −0.829740
\(582\) 0 0
\(583\) − 8.00000i − 0.331326i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.0000i 0.412744i 0.978474 + 0.206372i \(0.0661657\pi\)
−0.978474 + 0.206372i \(0.933834\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) 0 0
\(591\) −44.0000 −1.80992
\(592\) 0 0
\(593\) − 18.0000i − 0.739171i −0.929197 0.369586i \(-0.879500\pi\)
0.929197 0.369586i \(-0.120500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 32.0000i − 1.30967i
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 6.00000i 0.244339i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2.00000i 0.0811775i 0.999176 + 0.0405887i \(0.0129233\pi\)
−0.999176 + 0.0405887i \(0.987077\pi\)
\(608\) 0 0
\(609\) 8.00000 0.324176
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) − 22.0000i − 0.888572i −0.895885 0.444286i \(-0.853457\pi\)
0.895885 0.444286i \(-0.146543\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 30.0000i − 1.20775i −0.797077 0.603877i \(-0.793622\pi\)
0.797077 0.603877i \(-0.206378\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) 0 0
\(621\) 24.0000 0.963087
\(622\) 0 0
\(623\) 12.0000i 0.480770i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 64.0000i 2.55591i
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −36.0000 −1.43314 −0.716569 0.697517i \(-0.754288\pi\)
−0.716569 + 0.697517i \(0.754288\pi\)
\(632\) 0 0
\(633\) 8.00000i 0.317971i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 18.0000i − 0.713186i
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) − 30.0000i − 1.18308i −0.806274 0.591542i \(-0.798519\pi\)
0.806274 0.591542i \(-0.201481\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 42.0000i 1.65119i 0.564263 + 0.825595i \(0.309160\pi\)
−0.564263 + 0.825595i \(0.690840\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 0 0
\(653\) − 30.0000i − 1.17399i −0.809590 0.586995i \(-0.800311\pi\)
0.809590 0.586995i \(-0.199689\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.0000i 0.390137i
\(658\) 0 0
\(659\) 16.0000 0.623272 0.311636 0.950202i \(-0.399123\pi\)
0.311636 + 0.950202i \(0.399123\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) 24.0000i 0.932083i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000i 0.464642i
\(668\) 0 0
\(669\) −4.00000 −0.154649
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) − 10.0000i − 0.385472i −0.981251 0.192736i \(-0.938264\pi\)
0.981251 0.192736i \(-0.0617360\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 26.0000i − 0.999261i −0.866239 0.499631i \(-0.833469\pi\)
0.866239 0.499631i \(-0.166531\pi\)
\(678\) 0 0
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) −36.0000 −1.37952
\(682\) 0 0
\(683\) 34.0000i 1.30097i 0.759517 + 0.650487i \(0.225435\pi\)
−0.759517 + 0.650487i \(0.774565\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 20.0000i − 0.763048i
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 0 0
\(693\) 8.00000i 0.303895i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 20.0000i − 0.757554i
\(698\) 0 0
\(699\) 4.00000 0.151294
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 16.0000i 0.603451i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 28.0000i − 1.05305i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) 24.0000i 0.898807i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 16.0000i − 0.597531i
\(718\) 0 0
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 0 0
\(723\) − 36.0000i − 1.33885i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.00000i 0.0741759i 0.999312 + 0.0370879i \(0.0118082\pi\)
−0.999312 + 0.0370879i \(0.988192\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −4.00000 −0.147945
\(732\) 0 0
\(733\) − 6.00000i − 0.221615i −0.993842 0.110808i \(-0.964656\pi\)
0.993842 0.110808i \(-0.0353437\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000i 0.884051i
\(738\) 0 0
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) 0 0
\(741\) −96.0000 −3.52665
\(742\) 0 0
\(743\) 42.0000i 1.54083i 0.637542 + 0.770415i \(0.279951\pi\)
−0.637542 + 0.770415i \(0.720049\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 10.0000i − 0.365881i
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) − 40.0000i − 1.45768i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 10.0000i − 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) 0 0
\(759\) −48.0000 −1.74229
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) − 28.0000i − 1.01367i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) −52.0000 −1.87273
\(772\) 0 0
\(773\) − 38.0000i − 1.36677i −0.730061 0.683383i \(-0.760508\pi\)
0.730061 0.683383i \(-0.239492\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.00000i 0.286998i
\(778\) 0 0
\(779\) 80.0000 2.86630
\(780\) 0 0
\(781\) −48.0000 −1.71758
\(782\) 0 0
\(783\) − 8.00000i − 0.285897i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 14.0000i − 0.499046i −0.968369 0.249523i \(-0.919726\pi\)
0.968369 0.249523i \(-0.0802738\pi\)
\(788\) 0 0
\(789\) −4.00000 −0.142404
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 12.0000i 0.426132i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 40.0000i 1.41157i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 36.0000i 1.26726i
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) − 56.0000i − 1.96401i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 16.0000i − 0.559769i
\(818\) 0 0
\(819\) −12.0000 −0.419314
\(820\) 0 0
\(821\) 38.0000 1.32621 0.663105 0.748527i \(-0.269238\pi\)
0.663105 + 0.748527i \(0.269238\pi\)
\(822\) 0 0
\(823\) − 6.00000i − 0.209147i −0.994517 0.104573i \(-0.966652\pi\)
0.994517 0.104573i \(-0.0333477\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 50.0000i 1.73867i 0.494223 + 0.869335i \(0.335453\pi\)
−0.494223 + 0.869335i \(0.664547\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) −44.0000 −1.52634
\(832\) 0 0
\(833\) 6.00000i 0.207888i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 16.0000i − 0.553041i
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) − 20.0000i − 0.688837i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.0000i 0.343604i
\(848\) 0 0
\(849\) −52.0000 −1.78464
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 10.0000i 0.342393i 0.985237 + 0.171197i \(0.0547634\pi\)
−0.985237 + 0.171197i \(0.945237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.0000i 0.614868i 0.951569 + 0.307434i \(0.0994704\pi\)
−0.951569 + 0.307434i \(0.900530\pi\)
\(858\) 0 0
\(859\) 16.0000 0.545913 0.272956 0.962026i \(-0.411998\pi\)
0.272956 + 0.962026i \(0.411998\pi\)
\(860\) 0 0
\(861\) 40.0000 1.36320
\(862\) 0 0
\(863\) − 46.0000i − 1.56586i −0.622111 0.782929i \(-0.713725\pi\)
0.622111 0.782929i \(-0.286275\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 26.0000i 0.883006i
\(868\) 0 0
\(869\) 32.0000 1.08553
\(870\) 0 0
\(871\) −36.0000 −1.21981
\(872\) 0 0
\(873\) − 10.0000i − 0.338449i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 10.0000i − 0.337676i −0.985644 0.168838i \(-0.945999\pi\)
0.985644 0.168838i \(-0.0540015\pi\)
\(878\) 0 0
\(879\) −36.0000 −1.21425
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) 2.00000i 0.0673054i 0.999434 + 0.0336527i \(0.0107140\pi\)
−0.999434 + 0.0336527i \(0.989286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.00000i 0.0671534i 0.999436 + 0.0335767i \(0.0106898\pi\)
−0.999436 + 0.0335767i \(0.989310\pi\)
\(888\) 0 0
\(889\) 12.0000 0.402467
\(890\) 0 0
\(891\) 44.0000 1.47406
\(892\) 0 0
\(893\) − 16.0000i − 0.535420i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 72.0000i − 2.40401i
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 0 0
\(903\) − 8.00000i − 0.266223i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 2.00000i 0.0664089i 0.999449 + 0.0332045i \(0.0105712\pi\)
−0.999449 + 0.0332045i \(0.989429\pi\)
\(908\) 0 0
\(909\) 14.0000 0.464351
\(910\) 0 0
\(911\) 28.0000 0.927681 0.463841 0.885919i \(-0.346471\pi\)
0.463841 + 0.885919i \(0.346471\pi\)
\(912\) 0 0
\(913\) − 40.0000i − 1.32381i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.00000i 0.264183i
\(918\) 0 0
\(919\) 56.0000 1.84727 0.923635 0.383274i \(-0.125203\pi\)
0.923635 + 0.383274i \(0.125203\pi\)
\(920\) 0 0
\(921\) 44.0000 1.44985
\(922\) 0 0
\(923\) − 72.0000i − 2.36991i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 2.00000i − 0.0656886i
\(928\) 0 0
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) −24.0000 −0.786568
\(932\) 0 0
\(933\) − 56.0000i − 1.83336i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 34.0000i 1.11073i 0.831606 + 0.555366i \(0.187422\pi\)
−0.831606 + 0.555366i \(0.812578\pi\)
\(938\) 0 0
\(939\) −12.0000 −0.391605
\(940\) 0 0
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) 0 0
\(943\) 60.0000i 1.95387i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 38.0000i − 1.23483i −0.786636 0.617417i \(-0.788179\pi\)
0.786636 0.617417i \(-0.211821\pi\)
\(948\) 0 0
\(949\) −60.0000 −1.94768
\(950\) 0 0
\(951\) 4.00000 0.129709
\(952\) 0 0
\(953\) − 58.0000i − 1.87880i −0.342817 0.939402i \(-0.611381\pi\)
0.342817 0.939402i \(-0.388619\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 16.0000i 0.517207i
\(958\) 0 0
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 6.00000i 0.193347i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 22.0000i − 0.707472i −0.935345 0.353736i \(-0.884911\pi\)
0.935345 0.353736i \(-0.115089\pi\)
\(968\) 0 0
\(969\) 32.0000 1.02799
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 32.0000i 1.02587i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.0000i 1.34370i 0.740688 + 0.671850i \(0.234500\pi\)
−0.740688 + 0.671850i \(0.765500\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 0 0
\(983\) − 46.0000i − 1.46717i −0.679597 0.733586i \(-0.737845\pi\)
0.679597 0.733586i \(-0.262155\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 8.00000i − 0.254643i
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 44.0000 1.39771 0.698853 0.715265i \(-0.253694\pi\)
0.698853 + 0.715265i \(0.253694\pi\)
\(992\) 0 0
\(993\) 8.00000i 0.253872i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 18.0000i − 0.570066i −0.958518 0.285033i \(-0.907995\pi\)
0.958518 0.285033i \(-0.0920045\pi\)
\(998\) 0 0
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.2.c.c.449.2 2
4.3 odd 2 1600.2.c.f.449.1 2
5.2 odd 4 1600.2.a.t.1.1 1
5.3 odd 4 320.2.a.b.1.1 1
5.4 even 2 inner 1600.2.c.c.449.1 2
8.3 odd 2 800.2.c.a.449.2 2
8.5 even 2 800.2.c.b.449.1 2
15.8 even 4 2880.2.a.o.1.1 1
20.3 even 4 320.2.a.e.1.1 1
20.7 even 4 1600.2.a.e.1.1 1
20.19 odd 2 1600.2.c.f.449.2 2
24.5 odd 2 7200.2.f.g.6049.2 2
24.11 even 2 7200.2.f.w.6049.1 2
40.3 even 4 160.2.a.a.1.1 1
40.13 odd 4 160.2.a.b.1.1 yes 1
40.19 odd 2 800.2.c.a.449.1 2
40.27 even 4 800.2.a.i.1.1 1
40.29 even 2 800.2.c.b.449.2 2
40.37 odd 4 800.2.a.a.1.1 1
60.23 odd 4 2880.2.a.d.1.1 1
80.3 even 4 1280.2.d.h.641.2 2
80.13 odd 4 1280.2.d.b.641.1 2
80.43 even 4 1280.2.d.h.641.1 2
80.53 odd 4 1280.2.d.b.641.2 2
120.29 odd 2 7200.2.f.g.6049.1 2
120.53 even 4 1440.2.a.l.1.1 1
120.59 even 2 7200.2.f.w.6049.2 2
120.77 even 4 7200.2.a.l.1.1 1
120.83 odd 4 1440.2.a.i.1.1 1
120.107 odd 4 7200.2.a.bp.1.1 1
280.13 even 4 7840.2.a.e.1.1 1
280.83 odd 4 7840.2.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.2.a.a.1.1 1 40.3 even 4
160.2.a.b.1.1 yes 1 40.13 odd 4
320.2.a.b.1.1 1 5.3 odd 4
320.2.a.e.1.1 1 20.3 even 4
800.2.a.a.1.1 1 40.37 odd 4
800.2.a.i.1.1 1 40.27 even 4
800.2.c.a.449.1 2 40.19 odd 2
800.2.c.a.449.2 2 8.3 odd 2
800.2.c.b.449.1 2 8.5 even 2
800.2.c.b.449.2 2 40.29 even 2
1280.2.d.b.641.1 2 80.13 odd 4
1280.2.d.b.641.2 2 80.53 odd 4
1280.2.d.h.641.1 2 80.43 even 4
1280.2.d.h.641.2 2 80.3 even 4
1440.2.a.i.1.1 1 120.83 odd 4
1440.2.a.l.1.1 1 120.53 even 4
1600.2.a.e.1.1 1 20.7 even 4
1600.2.a.t.1.1 1 5.2 odd 4
1600.2.c.c.449.1 2 5.4 even 2 inner
1600.2.c.c.449.2 2 1.1 even 1 trivial
1600.2.c.f.449.1 2 4.3 odd 2
1600.2.c.f.449.2 2 20.19 odd 2
2880.2.a.d.1.1 1 60.23 odd 4
2880.2.a.o.1.1 1 15.8 even 4
7200.2.a.l.1.1 1 120.77 even 4
7200.2.a.bp.1.1 1 120.107 odd 4
7200.2.f.g.6049.1 2 120.29 odd 2
7200.2.f.g.6049.2 2 24.5 odd 2
7200.2.f.w.6049.1 2 24.11 even 2
7200.2.f.w.6049.2 2 120.59 even 2
7840.2.a.e.1.1 1 280.13 even 4
7840.2.a.w.1.1 1 280.83 odd 4