Properties

Label 1600.2.a
Level $1600$
Weight $2$
Character orbit 1600.a
Rep. character $\chi_{1600}(1,\cdot)$
Character field $\Q$
Dimension $35$
Newform subspaces $30$
Sturm bound $480$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 30 \)
Sturm bound: \(480\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1600))\).

Total New Old
Modular forms 276 41 235
Cusp forms 205 35 170
Eisenstein series 71 6 65

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(8\)
\(+\)\(-\)\(-\)\(10\)
\(-\)\(+\)\(-\)\(9\)
\(-\)\(-\)\(+\)\(8\)
Plus space\(+\)\(16\)
Minus space\(-\)\(19\)

Trace form

\( 35 q + 31 q^{9} + O(q^{10}) \) \( 35 q + 31 q^{9} - 10 q^{13} - 2 q^{17} - 8 q^{21} + 6 q^{29} + 16 q^{33} - 2 q^{37} - 2 q^{41} + 19 q^{49} + 30 q^{53} + 16 q^{57} - 18 q^{61} + 24 q^{69} + 6 q^{73} + 16 q^{77} + 3 q^{81} - 10 q^{89} + 32 q^{93} - 18 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1600))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
1600.2.a.a 1600.a 1.a $1$ $12.776$ \(\Q\) None 200.2.a.a \(0\) \(-3\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-2q^{7}+6q^{9}-q^{11}+4q^{13}+\cdots\)
1600.2.a.b 1600.a 1.a $1$ $12.776$ \(\Q\) None 200.2.a.a \(0\) \(-3\) \(0\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-2q^{7}+6q^{9}+q^{11}-4q^{13}+\cdots\)
1600.2.a.c 1600.a 1.a $1$ $12.776$ \(\Q\) None 20.2.a.a \(0\) \(-2\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-2q^{7}+q^{9}+2q^{13}+6q^{17}+\cdots\)
1600.2.a.d 1600.a 1.a $1$ $12.776$ \(\Q\) None 40.2.c.a \(0\) \(-2\) \(0\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{7}+q^{9}-4q^{11}+4q^{13}+\cdots\)
1600.2.a.e 1600.a 1.a $1$ $12.776$ \(\Q\) None 160.2.a.a \(0\) \(-2\) \(0\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{7}+q^{9}+4q^{11}-6q^{13}+\cdots\)
1600.2.a.f 1600.a 1.a $1$ $12.776$ \(\Q\) None 40.2.c.a \(0\) \(-2\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{7}+q^{9}+4q^{11}-4q^{13}+\cdots\)
1600.2.a.g 1600.a 1.a $1$ $12.776$ \(\Q\) None 800.2.a.b \(0\) \(-1\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{7}-2q^{9}-5q^{11}+5q^{17}+\cdots\)
1600.2.a.h 1600.a 1.a $1$ $12.776$ \(\Q\) None 800.2.a.b \(0\) \(-1\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{7}-2q^{9}+5q^{11}-5q^{17}+\cdots\)
1600.2.a.i 1600.a 1.a $1$ $12.776$ \(\Q\) None 50.2.a.a \(0\) \(-1\) \(0\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{7}-2q^{9}-3q^{11}-4q^{13}+\cdots\)
1600.2.a.j 1600.a 1.a $1$ $12.776$ \(\Q\) None 50.2.a.a \(0\) \(-1\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{7}-2q^{9}+3q^{11}+4q^{13}+\cdots\)
1600.2.a.k 1600.a 1.a $1$ $12.776$ \(\Q\) None 40.2.a.a \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{7}-3q^{9}+4q^{11}-2q^{13}-2q^{17}+\cdots\)
1600.2.a.l 1600.a 1.a $1$ $12.776$ \(\Q\) \(\Q(\sqrt{-1}) \) 160.2.c.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q-3q^{9}-4q^{13}+8q^{17}-10q^{29}+\cdots\)
1600.2.a.m 1600.a 1.a $1$ $12.776$ \(\Q\) \(\Q(\sqrt{-1}) \) 160.2.c.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q-3q^{9}+4q^{13}-8q^{17}-10q^{29}+\cdots\)
1600.2.a.n 1600.a 1.a $1$ $12.776$ \(\Q\) \(\Q(\sqrt{-1}) \) 32.2.a.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-3q^{9}+6q^{13}-2q^{17}+10q^{29}+\cdots\)
1600.2.a.o 1600.a 1.a $1$ $12.776$ \(\Q\) None 40.2.a.a \(0\) \(0\) \(0\) \(4\) $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{7}-3q^{9}-4q^{11}-2q^{13}-2q^{17}+\cdots\)
1600.2.a.p 1600.a 1.a $1$ $12.776$ \(\Q\) None 50.2.a.a \(0\) \(1\) \(0\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}-2q^{9}-3q^{11}+4q^{13}+\cdots\)
1600.2.a.q 1600.a 1.a $1$ $12.776$ \(\Q\) None 50.2.a.a \(0\) \(1\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}-2q^{9}+3q^{11}-4q^{13}+\cdots\)
1600.2.a.r 1600.a 1.a $1$ $12.776$ \(\Q\) None 800.2.a.b \(0\) \(1\) \(0\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{7}-2q^{9}-5q^{11}-5q^{17}+\cdots\)
1600.2.a.s 1600.a 1.a $1$ $12.776$ \(\Q\) None 800.2.a.b \(0\) \(1\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{7}-2q^{9}+5q^{11}+5q^{17}+\cdots\)
1600.2.a.t 1600.a 1.a $1$ $12.776$ \(\Q\) None 160.2.a.a \(0\) \(2\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-2q^{7}+q^{9}-4q^{11}-6q^{13}+\cdots\)
1600.2.a.u 1600.a 1.a $1$ $12.776$ \(\Q\) None 40.2.c.a \(0\) \(2\) \(0\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-2q^{7}+q^{9}-4q^{11}-4q^{13}+\cdots\)
1600.2.a.v 1600.a 1.a $1$ $12.776$ \(\Q\) None 40.2.c.a \(0\) \(2\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-2q^{7}+q^{9}+4q^{11}+4q^{13}+\cdots\)
1600.2.a.w 1600.a 1.a $1$ $12.776$ \(\Q\) None 20.2.a.a \(0\) \(2\) \(0\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+2q^{7}+q^{9}+2q^{13}+6q^{17}+\cdots\)
1600.2.a.x 1600.a 1.a $1$ $12.776$ \(\Q\) None 200.2.a.a \(0\) \(3\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+2q^{7}+6q^{9}-q^{11}-4q^{13}+\cdots\)
1600.2.a.y 1600.a 1.a $1$ $12.776$ \(\Q\) None 200.2.a.a \(0\) \(3\) \(0\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+2q^{7}+6q^{9}+q^{11}+4q^{13}+\cdots\)
1600.2.a.z 1600.a 1.a $2$ $12.776$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-5}) \) 160.2.c.b \(0\) \(-2\) \(0\) \(6\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+(-1-\beta )q^{3}+(3-\beta )q^{7}+(3+2\beta )q^{9}+\cdots\)
1600.2.a.ba 1600.a 1.a $2$ $12.776$ \(\Q(\sqrt{5}) \) None 800.2.a.k \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+2\beta q^{7}+2q^{9}-\beta q^{11}-4q^{13}+\cdots\)
1600.2.a.bb 1600.a 1.a $2$ $12.776$ \(\Q(\sqrt{5}) \) None 800.2.a.k \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+2\beta q^{7}+2q^{9}+\beta q^{11}+4q^{13}+\cdots\)
1600.2.a.bc 1600.a 1.a $2$ $12.776$ \(\Q(\sqrt{2}) \) None 160.2.a.c \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+\beta q^{7}+5q^{9}+2\beta q^{11}-2q^{13}+\cdots\)
1600.2.a.bd 1600.a 1.a $2$ $12.776$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-5}) \) 160.2.c.b \(0\) \(2\) \(0\) \(-6\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+(1+\beta )q^{3}+(-3+\beta )q^{7}+(3+2\beta )q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1600))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1600)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(800))\)\(^{\oplus 2}\)