Defining parameters
Level: | \( N \) | \(=\) | \( 1600 = 2^{6} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1600.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 30 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1600))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 276 | 41 | 235 |
Cusp forms | 205 | 35 | 170 |
Eisenstein series | 71 | 6 | 65 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(8\) |
\(+\) | \(-\) | \(-\) | \(10\) |
\(-\) | \(+\) | \(-\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(8\) |
Plus space | \(+\) | \(16\) | |
Minus space | \(-\) | \(19\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1600))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1600))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1600)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(800))\)\(^{\oplus 2}\)