Defining parameters
| Level: | \( N \) | \(=\) | \( 1600 = 2^{6} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1600.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 30 \) | ||
| Sturm bound: | \(480\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1600))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 276 | 41 | 235 |
| Cusp forms | 205 | 35 | 170 |
| Eisenstein series | 71 | 6 | 65 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(66\) | \(9\) | \(57\) | \(49\) | \(8\) | \(41\) | \(17\) | \(1\) | \(16\) | |||
| \(+\) | \(-\) | \(-\) | \(70\) | \(12\) | \(58\) | \(52\) | \(10\) | \(42\) | \(18\) | \(2\) | \(16\) | |||
| \(-\) | \(+\) | \(-\) | \(72\) | \(10\) | \(62\) | \(54\) | \(9\) | \(45\) | \(18\) | \(1\) | \(17\) | |||
| \(-\) | \(-\) | \(+\) | \(68\) | \(10\) | \(58\) | \(50\) | \(8\) | \(42\) | \(18\) | \(2\) | \(16\) | |||
| Plus space | \(+\) | \(134\) | \(19\) | \(115\) | \(99\) | \(16\) | \(83\) | \(35\) | \(3\) | \(32\) | ||||
| Minus space | \(-\) | \(142\) | \(22\) | \(120\) | \(106\) | \(19\) | \(87\) | \(36\) | \(3\) | \(33\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1600))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1600))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1600)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(800))\)\(^{\oplus 2}\)