Properties

Label 1600.1.m.a
Level $1600$
Weight $1$
Character orbit 1600.m
Analytic conductor $0.799$
Analytic rank $0$
Dimension $2$
Projective image $D_{2}$
CM/RM discs -8, -40, 5
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,1,Mod(993,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.993");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1600.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.798504020213\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-2}, \sqrt{5})\)
Artin image: $\OD_{16}$
Artin field: Galois closure of 8.4.5120000000.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - i q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - i q^{9} - 2 i q^{11} - 2 q^{19} + 2 q^{41} - i q^{49} + 2 q^{59} - q^{81} + 2 i q^{89} - 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{19} + 4 q^{41} + 4 q^{59} - 2 q^{81} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(i\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
993.1
1.00000i
1.00000i
0 0 0 0 0 0 0 1.00000i 0
1057.1 0 0 0 0 0 0 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 RM by \(\Q(\sqrt{5}) \)
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
40.e odd 2 1 CM by \(\Q(\sqrt{-10}) \)
20.e even 4 2 inner
40.i odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.1.m.a 2
4.b odd 2 1 1600.1.m.b yes 2
5.b even 2 1 RM 1600.1.m.a 2
5.c odd 4 2 1600.1.m.b yes 2
8.b even 2 1 1600.1.m.b yes 2
8.d odd 2 1 CM 1600.1.m.a 2
20.d odd 2 1 1600.1.m.b yes 2
20.e even 4 2 inner 1600.1.m.a 2
40.e odd 2 1 CM 1600.1.m.a 2
40.f even 2 1 1600.1.m.b yes 2
40.i odd 4 2 inner 1600.1.m.a 2
40.k even 4 2 1600.1.m.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1600.1.m.a 2 1.a even 1 1 trivial
1600.1.m.a 2 5.b even 2 1 RM
1600.1.m.a 2 8.d odd 2 1 CM
1600.1.m.a 2 20.e even 4 2 inner
1600.1.m.a 2 40.e odd 2 1 CM
1600.1.m.a 2 40.i odd 4 2 inner
1600.1.m.b yes 2 4.b odd 2 1
1600.1.m.b yes 2 5.c odd 4 2
1600.1.m.b yes 2 8.b even 2 1
1600.1.m.b yes 2 20.d odd 2 1
1600.1.m.b yes 2 40.f even 2 1
1600.1.m.b yes 2 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1600, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{19} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T - 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T - 2)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 4 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less