Properties

Label 160.6.n.b.63.2
Level 160
Weight 6
Character 160.63
Analytic conductor 25.661
Analytic rank 0
Dimension 14
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 160.n (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.6614111701\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Defining polynomial: \(x^{14} - 4 x^{13} + 8 x^{12} - 4626 x^{11} + 149441 x^{10} - 2113414 x^{9} + 17958066 x^{8} - 97717112 x^{7} + 355171384 x^{6} - 910571904 x^{5} + 2428303248 x^{4} - 9166992192 x^{3} + 32237484304 x^{2} - 66916821408 x + 69451154208\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{31}\cdot 5^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.2
Root \(3.77108 + 3.77108i\) of defining polynomial
Character \(\chi\) \(=\) 160.63
Dual form 160.6.n.b.127.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-13.4331 + 13.4331i) q^{3} +(15.0352 + 53.8418i) q^{5} +(-76.4413 - 76.4413i) q^{7} -117.896i q^{9} +O(q^{10})\) \(q+(-13.4331 + 13.4331i) q^{3} +(15.0352 + 53.8418i) q^{5} +(-76.4413 - 76.4413i) q^{7} -117.896i q^{9} -622.995i q^{11} +(-293.552 - 293.552i) q^{13} +(-925.232 - 521.293i) q^{15} +(-1153.02 + 1153.02i) q^{17} +2003.44 q^{19} +2053.69 q^{21} +(1392.29 - 1392.29i) q^{23} +(-2672.88 + 1619.05i) q^{25} +(-1680.53 - 1680.53i) q^{27} +305.819i q^{29} +2108.06i q^{31} +(8368.75 + 8368.75i) q^{33} +(2966.43 - 5265.05i) q^{35} +(9903.12 - 9903.12i) q^{37} +7886.62 q^{39} +16996.0 q^{41} +(-2031.28 + 2031.28i) q^{43} +(6347.74 - 1772.59i) q^{45} +(-682.885 - 682.885i) q^{47} -5120.46i q^{49} -30977.2i q^{51} +(21092.5 + 21092.5i) q^{53} +(33543.2 - 9366.86i) q^{55} +(-26912.4 + 26912.4i) q^{57} +11617.4 q^{59} -1309.80 q^{61} +(-9012.12 + 9012.12i) q^{63} +(11391.8 - 20219.0i) q^{65} +(-39870.6 - 39870.6i) q^{67} +37405.7i q^{69} +25454.3i q^{71} +(1031.25 + 1031.25i) q^{73} +(14156.3 - 57653.9i) q^{75} +(-47622.5 + 47622.5i) q^{77} -11849.6 q^{79} +73798.3 q^{81} +(45180.7 - 45180.7i) q^{83} +(-79416.5 - 44744.7i) q^{85} +(-4108.09 - 4108.09i) q^{87} -143889. i q^{89} +44879.0i q^{91} +(-28317.8 - 28317.8i) q^{93} +(30122.1 + 107869. i) q^{95} +(-24390.9 + 24390.9i) q^{97} -73448.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14q + 10q^{3} + 42q^{5} + 66q^{7} + O(q^{10}) \) \( 14q + 10q^{3} + 42q^{5} + 66q^{7} - 414q^{13} + 278q^{15} + 1222q^{17} + 5672q^{19} + 5924q^{21} + 2902q^{23} - 4466q^{25} - 2168q^{27} - 2444q^{33} - 2618q^{35} - 1790q^{37} - 11076q^{39} + 11644q^{41} - 3982q^{43} + 14704q^{45} - 1278q^{47} + 5882q^{53} + 65608q^{55} - 14552q^{57} - 8504q^{59} + 20564q^{61} + 19422q^{63} + 40798q^{65} + 107926q^{67} - 16418q^{73} + 66586q^{75} - 13348q^{77} - 146544q^{79} + 173806q^{81} - 36398q^{83} - 66262q^{85} + 124384q^{87} - 306620q^{93} + 173768q^{95} - 60314q^{97} - 388628q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −13.4331 + 13.4331i −0.861733 + 0.861733i −0.991539 0.129806i \(-0.958565\pi\)
0.129806 + 0.991539i \(0.458565\pi\)
\(4\) 0 0
\(5\) 15.0352 + 53.8418i 0.268958 + 0.963152i
\(6\) 0 0
\(7\) −76.4413 76.4413i −0.589634 0.589634i 0.347898 0.937532i \(-0.386896\pi\)
−0.937532 + 0.347898i \(0.886896\pi\)
\(8\) 0 0
\(9\) 117.896i 0.485169i
\(10\) 0 0
\(11\) 622.995i 1.55240i −0.630488 0.776199i \(-0.717145\pi\)
0.630488 0.776199i \(-0.282855\pi\)
\(12\) 0 0
\(13\) −293.552 293.552i −0.481755 0.481755i 0.423937 0.905692i \(-0.360648\pi\)
−0.905692 + 0.423937i \(0.860648\pi\)
\(14\) 0 0
\(15\) −925.232 521.293i −1.06175 0.598210i
\(16\) 0 0
\(17\) −1153.02 + 1153.02i −0.967640 + 0.967640i −0.999493 0.0318524i \(-0.989859\pi\)
0.0318524 + 0.999493i \(0.489859\pi\)
\(18\) 0 0
\(19\) 2003.44 1.27319 0.636593 0.771200i \(-0.280343\pi\)
0.636593 + 0.771200i \(0.280343\pi\)
\(20\) 0 0
\(21\) 2053.69 1.01622
\(22\) 0 0
\(23\) 1392.29 1392.29i 0.548797 0.548797i −0.377296 0.926093i \(-0.623146\pi\)
0.926093 + 0.377296i \(0.123146\pi\)
\(24\) 0 0
\(25\) −2672.88 + 1619.05i −0.855323 + 0.518095i
\(26\) 0 0
\(27\) −1680.53 1680.53i −0.443647 0.443647i
\(28\) 0 0
\(29\) 305.819i 0.0675257i 0.999430 + 0.0337629i \(0.0107491\pi\)
−0.999430 + 0.0337629i \(0.989251\pi\)
\(30\) 0 0
\(31\) 2108.06i 0.393985i 0.980405 + 0.196992i \(0.0631174\pi\)
−0.980405 + 0.196992i \(0.936883\pi\)
\(32\) 0 0
\(33\) 8368.75 + 8368.75i 1.33775 + 1.33775i
\(34\) 0 0
\(35\) 2966.43 5265.05i 0.409321 0.726494i
\(36\) 0 0
\(37\) 9903.12 9903.12i 1.18924 1.18924i 0.211957 0.977279i \(-0.432016\pi\)
0.977279 0.211957i \(-0.0679835\pi\)
\(38\) 0 0
\(39\) 7886.62 0.830289
\(40\) 0 0
\(41\) 16996.0 1.57902 0.789511 0.613736i \(-0.210334\pi\)
0.789511 + 0.613736i \(0.210334\pi\)
\(42\) 0 0
\(43\) −2031.28 + 2031.28i −0.167533 + 0.167533i −0.785894 0.618361i \(-0.787797\pi\)
0.618361 + 0.785894i \(0.287797\pi\)
\(44\) 0 0
\(45\) 6347.74 1772.59i 0.467291 0.130490i
\(46\) 0 0
\(47\) −682.885 682.885i −0.0450924 0.0450924i 0.684201 0.729293i \(-0.260151\pi\)
−0.729293 + 0.684201i \(0.760151\pi\)
\(48\) 0 0
\(49\) 5120.46i 0.304663i
\(50\) 0 0
\(51\) 30977.2i 1.66770i
\(52\) 0 0
\(53\) 21092.5 + 21092.5i 1.03143 + 1.03143i 0.999490 + 0.0319374i \(0.0101677\pi\)
0.0319374 + 0.999490i \(0.489832\pi\)
\(54\) 0 0
\(55\) 33543.2 9366.86i 1.49519 0.417530i
\(56\) 0 0
\(57\) −26912.4 + 26912.4i −1.09715 + 1.09715i
\(58\) 0 0
\(59\) 11617.4 0.434490 0.217245 0.976117i \(-0.430293\pi\)
0.217245 + 0.976117i \(0.430293\pi\)
\(60\) 0 0
\(61\) −1309.80 −0.0450694 −0.0225347 0.999746i \(-0.507174\pi\)
−0.0225347 + 0.999746i \(0.507174\pi\)
\(62\) 0 0
\(63\) −9012.12 + 9012.12i −0.286072 + 0.286072i
\(64\) 0 0
\(65\) 11391.8 20219.0i 0.334432 0.593576i
\(66\) 0 0
\(67\) −39870.6 39870.6i −1.08509 1.08509i −0.996026 0.0890646i \(-0.971612\pi\)
−0.0890646 0.996026i \(1.47161\pi\)
\(68\) 0 0
\(69\) 37405.7i 0.945833i
\(70\) 0 0
\(71\) 25454.3i 0.599259i 0.954056 + 0.299630i \(0.0968631\pi\)
−0.954056 + 0.299630i \(0.903137\pi\)
\(72\) 0 0
\(73\) 1031.25 + 1031.25i 0.0226495 + 0.0226495i 0.718341 0.695691i \(-0.244902\pi\)
−0.695691 + 0.718341i \(0.744902\pi\)
\(74\) 0 0
\(75\) 14156.3 57653.9i 0.290601 1.18352i
\(76\) 0 0
\(77\) −47622.5 + 47622.5i −0.915347 + 0.915347i
\(78\) 0 0
\(79\) −11849.6 −0.213617 −0.106808 0.994280i \(-0.534063\pi\)
−0.106808 + 0.994280i \(0.534063\pi\)
\(80\) 0 0
\(81\) 73798.3 1.24978
\(82\) 0 0
\(83\) 45180.7 45180.7i 0.719876 0.719876i −0.248703 0.968580i \(-0.580004\pi\)
0.968580 + 0.248703i \(0.0800044\pi\)
\(84\) 0 0
\(85\) −79416.5 44744.7i −1.19224 0.671730i
\(86\) 0 0
\(87\) −4108.09 4108.09i −0.0581892 0.0581892i
\(88\) 0 0
\(89\) 143889.i 1.92553i −0.270332 0.962767i \(-0.587133\pi\)
0.270332 0.962767i \(-0.412867\pi\)
\(90\) 0 0
\(91\) 44879.0i 0.568119i
\(92\) 0 0
\(93\) −28317.8 28317.8i −0.339510 0.339510i
\(94\) 0 0
\(95\) 30122.1 + 107869.i 0.342434 + 1.22627i
\(96\) 0 0
\(97\) −24390.9 + 24390.9i −0.263207 + 0.263207i −0.826356 0.563148i \(-0.809590\pi\)
0.563148 + 0.826356i \(0.309590\pi\)
\(98\) 0 0
\(99\) −73448.7 −0.753175
\(100\) 0 0
\(101\) 169993. 1.65816 0.829082 0.559127i \(-0.188864\pi\)
0.829082 + 0.559127i \(0.188864\pi\)
\(102\) 0 0
\(103\) −116026. + 116026.i −1.07761 + 1.07761i −0.0808914 + 0.996723i \(0.525777\pi\)
−0.996723 + 0.0808914i \(0.974223\pi\)
\(104\) 0 0
\(105\) 30877.6 + 110574.i 0.273319 + 0.978770i
\(106\) 0 0
\(107\) −68471.5 68471.5i −0.578163 0.578163i 0.356234 0.934397i \(-0.384061\pi\)
−0.934397 + 0.356234i \(0.884061\pi\)
\(108\) 0 0
\(109\) 20202.8i 0.162872i −0.996679 0.0814360i \(-0.974049\pi\)
0.996679 0.0814360i \(-0.0259506\pi\)
\(110\) 0 0
\(111\) 266059.i 2.04961i
\(112\) 0 0
\(113\) −79268.7 79268.7i −0.583990 0.583990i 0.352007 0.935997i \(-0.385499\pi\)
−0.935997 + 0.352007i \(0.885499\pi\)
\(114\) 0 0
\(115\) 95897.1 + 54030.2i 0.676178 + 0.380971i
\(116\) 0 0
\(117\) −34608.6 + 34608.6i −0.233733 + 0.233733i
\(118\) 0 0
\(119\) 176276. 1.14111
\(120\) 0 0
\(121\) −227072. −1.40994
\(122\) 0 0
\(123\) −228309. + 228309.i −1.36070 + 1.36070i
\(124\) 0 0
\(125\) −127360. 119570.i −0.729050 0.684460i
\(126\) 0 0
\(127\) 133983. + 133983.i 0.737121 + 0.737121i 0.972020 0.234898i \(-0.0754758\pi\)
−0.234898 + 0.972020i \(0.575476\pi\)
\(128\) 0 0
\(129\) 54572.8i 0.288737i
\(130\) 0 0
\(131\) 358577.i 1.82559i −0.408414 0.912797i \(-0.633918\pi\)
0.408414 0.912797i \(-0.366082\pi\)
\(132\) 0 0
\(133\) −153145. 153145.i −0.750715 0.750715i
\(134\) 0 0
\(135\) 65215.8 115750.i 0.307977 0.546622i
\(136\) 0 0
\(137\) −156028. + 156028.i −0.710232 + 0.710232i −0.966584 0.256352i \(-0.917479\pi\)
0.256352 + 0.966584i \(0.417479\pi\)
\(138\) 0 0
\(139\) −211815. −0.929865 −0.464932 0.885346i \(-0.653921\pi\)
−0.464932 + 0.885346i \(0.653921\pi\)
\(140\) 0 0
\(141\) 18346.5 0.0777152
\(142\) 0 0
\(143\) −182881. + 182881.i −0.747876 + 0.747876i
\(144\) 0 0
\(145\) −16465.8 + 4598.05i −0.0650375 + 0.0181616i
\(146\) 0 0
\(147\) 68783.7 + 68783.7i 0.262538 + 0.262538i
\(148\) 0 0
\(149\) 55272.1i 0.203958i −0.994787 0.101979i \(-0.967483\pi\)
0.994787 0.101979i \(-0.0325174\pi\)
\(150\) 0 0
\(151\) 358721.i 1.28031i −0.768247 0.640154i \(-0.778871\pi\)
0.768247 0.640154i \(-0.221129\pi\)
\(152\) 0 0
\(153\) 135936. + 135936.i 0.469469 + 0.469469i
\(154\) 0 0
\(155\) −113502. + 31695.2i −0.379467 + 0.105965i
\(156\) 0 0
\(157\) 355644. 355644.i 1.15151 1.15151i 0.165255 0.986251i \(-0.447155\pi\)
0.986251 0.165255i \(-0.0528447\pi\)
\(158\) 0 0
\(159\) −566675. −1.77763
\(160\) 0 0
\(161\) −212858. −0.647179
\(162\) 0 0
\(163\) 288242. 288242.i 0.849745 0.849745i −0.140356 0.990101i \(-0.544825\pi\)
0.990101 + 0.140356i \(0.0448248\pi\)
\(164\) 0 0
\(165\) −324763. + 576415.i −0.928660 + 1.64826i
\(166\) 0 0
\(167\) 78292.2 + 78292.2i 0.217234 + 0.217234i 0.807332 0.590098i \(-0.200911\pi\)
−0.590098 + 0.807332i \(0.700911\pi\)
\(168\) 0 0
\(169\) 198947.i 0.535823i
\(170\) 0 0
\(171\) 236197.i 0.617711i
\(172\) 0 0
\(173\) −242048. 242048.i −0.614875 0.614875i 0.329337 0.944212i \(-0.393175\pi\)
−0.944212 + 0.329337i \(0.893175\pi\)
\(174\) 0 0
\(175\) 328081. + 80556.7i 0.809814 + 0.198841i
\(176\) 0 0
\(177\) −156058. + 156058.i −0.374414 + 0.374414i
\(178\) 0 0
\(179\) 28397.8 0.0662448 0.0331224 0.999451i \(-0.489455\pi\)
0.0331224 + 0.999451i \(0.489455\pi\)
\(180\) 0 0
\(181\) 637320. 1.44598 0.722988 0.690861i \(-0.242768\pi\)
0.722988 + 0.690861i \(0.242768\pi\)
\(182\) 0 0
\(183\) 17594.7 17594.7i 0.0388378 0.0388378i
\(184\) 0 0
\(185\) 682098. + 384307.i 1.46527 + 0.825560i
\(186\) 0 0
\(187\) 718325. + 718325.i 1.50216 + 1.50216i
\(188\) 0 0
\(189\) 256924.i 0.523179i
\(190\) 0 0
\(191\) 618423.i 1.22660i −0.789851 0.613299i \(-0.789842\pi\)
0.789851 0.613299i \(-0.210158\pi\)
\(192\) 0 0
\(193\) 21641.0 + 21641.0i 0.0418199 + 0.0418199i 0.727708 0.685888i \(-0.240586\pi\)
−0.685888 + 0.727708i \(0.740586\pi\)
\(194\) 0 0
\(195\) 118577. + 424630.i 0.223313 + 0.799695i
\(196\) 0 0
\(197\) 38033.2 38033.2i 0.0698227 0.0698227i −0.671333 0.741156i \(-0.734278\pi\)
0.741156 + 0.671333i \(0.234278\pi\)
\(198\) 0 0
\(199\) 258481. 0.462696 0.231348 0.972871i \(-0.425686\pi\)
0.231348 + 0.972871i \(0.425686\pi\)
\(200\) 0 0
\(201\) 1.07117e6 1.87012
\(202\) 0 0
\(203\) 23377.2 23377.2i 0.0398155 0.0398155i
\(204\) 0 0
\(205\) 255539. + 915098.i 0.424691 + 1.52084i
\(206\) 0 0
\(207\) −164146. 164146.i −0.266259 0.266259i
\(208\) 0 0
\(209\) 1.24813e6i 1.97649i
\(210\) 0 0
\(211\) 185768.i 0.287253i −0.989632 0.143626i \(-0.954124\pi\)
0.989632 0.143626i \(-0.0458764\pi\)
\(212\) 0 0
\(213\) −341930. 341930.i −0.516402 0.516402i
\(214\) 0 0
\(215\) −139909. 78827.2i −0.206419 0.116300i
\(216\) 0 0
\(217\) 161143. 161143.i 0.232307 0.232307i
\(218\) 0 0
\(219\) −27705.8 −0.0390356
\(220\) 0 0
\(221\) 676942. 0.932332
\(222\) 0 0
\(223\) 759885. 759885.i 1.02326 1.02326i 0.0235364 0.999723i \(-0.492507\pi\)
0.999723 0.0235364i \(-0.00749255\pi\)
\(224\) 0 0
\(225\) 190879. + 315122.i 0.251363 + 0.414976i
\(226\) 0 0
\(227\) 35910.4 + 35910.4i 0.0462547 + 0.0462547i 0.729856 0.683601i \(-0.239587\pi\)
−0.683601 + 0.729856i \(0.739587\pi\)
\(228\) 0 0
\(229\) 1.54665e6i 1.94896i 0.224469 + 0.974481i \(0.427935\pi\)
−0.224469 + 0.974481i \(0.572065\pi\)
\(230\) 0 0
\(231\) 1.27944e6i 1.57757i
\(232\) 0 0
\(233\) −389263. 389263.i −0.469735 0.469735i 0.432093 0.901829i \(-0.357775\pi\)
−0.901829 + 0.432093i \(0.857775\pi\)
\(234\) 0 0
\(235\) 26500.5 47035.1i 0.0313028 0.0555587i
\(236\) 0 0
\(237\) 159176. 159176.i 0.184081 0.184081i
\(238\) 0 0
\(239\) −823778. −0.932858 −0.466429 0.884559i \(-0.654460\pi\)
−0.466429 + 0.884559i \(0.654460\pi\)
\(240\) 0 0
\(241\) −139658. −0.154890 −0.0774451 0.996997i \(-0.524676\pi\)
−0.0774451 + 0.996997i \(0.524676\pi\)
\(242\) 0 0
\(243\) −582969. + 582969.i −0.633330 + 0.633330i
\(244\) 0 0
\(245\) 275695. 76987.3i 0.293436 0.0819415i
\(246\) 0 0
\(247\) −588113. 588113.i −0.613365 0.613365i
\(248\) 0 0
\(249\) 1.21383e6i 1.24068i
\(250\) 0 0
\(251\) 1.26857e6i 1.27096i −0.772118 0.635480i \(-0.780802\pi\)
0.772118 0.635480i \(-0.219198\pi\)
\(252\) 0 0
\(253\) −867393. 867393.i −0.851951 0.851951i
\(254\) 0 0
\(255\) 1.66787e6 465749.i 1.60624 0.448540i
\(256\) 0 0
\(257\) 79307.5 79307.5i 0.0749000 0.0749000i −0.668664 0.743564i \(-0.733134\pi\)
0.743564 + 0.668664i \(0.233134\pi\)
\(258\) 0 0
\(259\) −1.51401e6 −1.40243
\(260\) 0 0
\(261\) 36054.8 0.0327614
\(262\) 0 0
\(263\) −750568. + 750568.i −0.669115 + 0.669115i −0.957511 0.288396i \(-0.906878\pi\)
0.288396 + 0.957511i \(0.406878\pi\)
\(264\) 0 0
\(265\) −818529. + 1.45279e6i −0.716010 + 1.27083i
\(266\) 0 0
\(267\) 1.93287e6 + 1.93287e6i 1.65930 + 1.65930i
\(268\) 0 0
\(269\) 2.07912e6i 1.75186i −0.482441 0.875928i \(-0.660250\pi\)
0.482441 0.875928i \(-0.339750\pi\)
\(270\) 0 0
\(271\) 826197.i 0.683377i −0.939813 0.341689i \(-0.889001\pi\)
0.939813 0.341689i \(-0.110999\pi\)
\(272\) 0 0
\(273\) −602863. 602863.i −0.489567 0.489567i
\(274\) 0 0
\(275\) 1.00866e6 + 1.66519e6i 0.804289 + 1.32780i
\(276\) 0 0
\(277\) −1.13631e6 + 1.13631e6i −0.889808 + 0.889808i −0.994504 0.104696i \(-0.966613\pi\)
0.104696 + 0.994504i \(0.466613\pi\)
\(278\) 0 0
\(279\) 248532. 0.191149
\(280\) 0 0
\(281\) 812.516 0.000613856 0.000306928 1.00000i \(-0.499902\pi\)
0.000306928 1.00000i \(0.499902\pi\)
\(282\) 0 0
\(283\) 129621. 129621.i 0.0962076 0.0962076i −0.657365 0.753572i \(-0.728329\pi\)
0.753572 + 0.657365i \(0.228329\pi\)
\(284\) 0 0
\(285\) −1.85365e6 1.04438e6i −1.35181 0.761633i
\(286\) 0 0
\(287\) −1.29920e6 1.29920e6i −0.931046 0.931046i
\(288\) 0 0
\(289\) 1.23905e6i 0.872655i
\(290\) 0 0
\(291\) 655290.i 0.453629i
\(292\) 0 0
\(293\) 1.81804e6 + 1.81804e6i 1.23719 + 1.23719i 0.961147 + 0.276039i \(0.0890218\pi\)
0.276039 + 0.961147i \(0.410978\pi\)
\(294\) 0 0
\(295\) 174670. + 625503.i 0.116860 + 0.418480i
\(296\) 0 0
\(297\) −1.04696e6 + 1.04696e6i −0.688717 + 0.688717i
\(298\) 0 0
\(299\) −817422. −0.528772
\(300\) 0 0
\(301\) 310548. 0.197566
\(302\) 0 0
\(303\) −2.28353e6 + 2.28353e6i −1.42890 + 1.42890i
\(304\) 0 0
\(305\) −19693.2 70522.2i −0.0121218 0.0434087i
\(306\) 0 0
\(307\) 1.39031e6 + 1.39031e6i 0.841907 + 0.841907i 0.989107 0.147199i \(-0.0470259\pi\)
−0.147199 + 0.989107i \(0.547026\pi\)
\(308\) 0 0
\(309\) 3.11718e6i 1.85723i
\(310\) 0 0
\(311\) 2.77199e6i 1.62514i 0.582863 + 0.812570i \(0.301932\pi\)
−0.582863 + 0.812570i \(0.698068\pi\)
\(312\) 0 0
\(313\) −393418. 393418.i −0.226983 0.226983i 0.584448 0.811431i \(-0.301311\pi\)
−0.811431 + 0.584448i \(0.801311\pi\)
\(314\) 0 0
\(315\) −620728. 349730.i −0.352472 0.198590i
\(316\) 0 0
\(317\) 594016. 594016.i 0.332009 0.332009i −0.521340 0.853349i \(-0.674568\pi\)
0.853349 + 0.521340i \(0.174568\pi\)
\(318\) 0 0
\(319\) 190524. 0.104827
\(320\) 0 0
\(321\) 1.83957e6 0.996445
\(322\) 0 0
\(323\) −2.31000e6 + 2.31000e6i −1.23199 + 1.23199i
\(324\) 0 0
\(325\) 1.25990e6 + 309356.i 0.661652 + 0.162462i
\(326\) 0 0
\(327\) 271387. + 271387.i 0.140352 + 0.140352i
\(328\) 0 0
\(329\) 104401.i 0.0531760i
\(330\) 0 0
\(331\) 2.17459e6i 1.09096i 0.838124 + 0.545479i \(0.183652\pi\)
−0.838124 + 0.545479i \(0.816348\pi\)
\(332\) 0 0
\(333\) −1.16754e6 1.16754e6i −0.576980 0.576980i
\(334\) 0 0
\(335\) 1.54724e6 2.74617e6i 0.753263 1.33695i
\(336\) 0 0
\(337\) −603974. + 603974.i −0.289696 + 0.289696i −0.836960 0.547264i \(-0.815669\pi\)
0.547264 + 0.836960i \(0.315669\pi\)
\(338\) 0 0
\(339\) 2.12965e6 1.00649
\(340\) 0 0
\(341\) 1.31331e6 0.611621
\(342\) 0 0
\(343\) −1.67616e6 + 1.67616e6i −0.769274 + 0.769274i
\(344\) 0 0
\(345\) −2.01399e6 + 562402.i −0.910981 + 0.254389i
\(346\) 0 0
\(347\) −2.94638e6 2.94638e6i −1.31361 1.31361i −0.918738 0.394869i \(-0.870790\pi\)
−0.394869 0.918738i \(1.37079\pi\)
\(348\) 0 0
\(349\) 1.01585e6i 0.446443i −0.974768 0.223221i \(-0.928343\pi\)
0.974768 0.223221i \(-0.0716573\pi\)
\(350\) 0 0
\(351\) 986648.i 0.427459i
\(352\) 0 0
\(353\) −3.05696e6 3.05696e6i −1.30573 1.30573i −0.924468 0.381259i \(-0.875491\pi\)
−0.381259 0.924468i \(-0.624509\pi\)
\(354\) 0 0
\(355\) −1.37050e6 + 382710.i −0.577178 + 0.161176i
\(356\) 0 0
\(357\) −2.36794e6 + 2.36794e6i −0.983331 + 0.983331i
\(358\) 0 0
\(359\) −1.01289e6 −0.414787 −0.207393 0.978258i \(-0.566498\pi\)
−0.207393 + 0.978258i \(0.566498\pi\)
\(360\) 0 0
\(361\) 1.53767e6 0.621005
\(362\) 0 0
\(363\) 3.05028e6 3.05028e6i 1.21499 1.21499i
\(364\) 0 0
\(365\) −40019.4 + 71029.6i −0.0157231 + 0.0279066i
\(366\) 0 0
\(367\) 1.78687e6 + 1.78687e6i 0.692511 + 0.692511i 0.962784 0.270272i \(-0.0871138\pi\)
−0.270272 + 0.962784i \(0.587114\pi\)
\(368\) 0 0
\(369\) 2.00377e6i 0.766092i
\(370\) 0 0
\(371\) 3.22468e6i 1.21633i
\(372\) 0 0
\(373\) 382840. + 382840.i 0.142477 + 0.142477i 0.774748 0.632270i \(-0.217877\pi\)
−0.632270 + 0.774748i \(0.717877\pi\)
\(374\) 0 0
\(375\) 3.31704e6 104637.i 1.21807 0.0384245i
\(376\) 0 0
\(377\) 89773.7 89773.7i 0.0325309 0.0325309i
\(378\) 0 0
\(379\) −2.37584e6 −0.849610 −0.424805 0.905285i \(-0.639657\pi\)
−0.424805 + 0.905285i \(0.639657\pi\)
\(380\) 0 0
\(381\) −3.59960e6 −1.27040
\(382\) 0 0
\(383\) −748285. + 748285.i −0.260657 + 0.260657i −0.825321 0.564664i \(-0.809006\pi\)
0.564664 + 0.825321i \(0.309006\pi\)
\(384\) 0 0
\(385\) −3.28010e6 1.84807e6i −1.12781 0.635428i
\(386\) 0 0
\(387\) 239480. + 239480.i 0.0812816 + 0.0812816i
\(388\) 0 0
\(389\) 3.04186e6i 1.01921i 0.860407 + 0.509607i \(0.170209\pi\)
−0.860407 + 0.509607i \(0.829791\pi\)
\(390\) 0 0
\(391\) 3.21068e6i 1.06208i
\(392\) 0 0
\(393\) 4.81680e6 + 4.81680e6i 1.57317 + 1.57317i
\(394\) 0 0
\(395\) −178161. 638003.i −0.0574539 0.205745i
\(396\) 0 0
\(397\) −3.19165e6 + 3.19165e6i −1.01634 + 1.01634i −0.0164751 + 0.999864i \(0.505244\pi\)
−0.999864 + 0.0164751i \(0.994756\pi\)
\(398\) 0 0
\(399\) 4.11443e6 1.29383
\(400\) 0 0
\(401\) 4.27231e6 1.32679 0.663395 0.748270i \(-0.269115\pi\)
0.663395 + 0.748270i \(0.269115\pi\)
\(402\) 0 0
\(403\) 618826. 618826.i 0.189804 0.189804i
\(404\) 0 0
\(405\) 1.10957e6 + 3.97343e6i 0.336138 + 1.20373i
\(406\) 0 0
\(407\) −6.16960e6 6.16960e6i −1.84617 1.84617i
\(408\) 0 0
\(409\) 4.39056e6i 1.29781i 0.760869 + 0.648906i \(0.224773\pi\)
−0.760869 + 0.648906i \(0.775227\pi\)
\(410\) 0 0
\(411\) 4.19187e6i 1.22406i
\(412\) 0 0
\(413\) −888050. 888050.i −0.256190 0.256190i
\(414\) 0 0
\(415\) 3.11191e6 + 1.75331e6i 0.886967 + 0.499734i
\(416\) 0 0
\(417\) 2.84533e6 2.84533e6i 0.801295 0.801295i
\(418\) 0 0
\(419\) −5.83290e6 −1.62312 −0.811558 0.584271i \(-0.801380\pi\)
−0.811558 + 0.584271i \(0.801380\pi\)
\(420\) 0 0
\(421\) −741629. −0.203930 −0.101965 0.994788i \(-0.532513\pi\)
−0.101965 + 0.994788i \(0.532513\pi\)
\(422\) 0 0
\(423\) −80509.4 + 80509.4i −0.0218774 + 0.0218774i
\(424\) 0 0
\(425\) 1.21509e6 4.94868e6i 0.326316 1.32897i
\(426\) 0 0
\(427\) 100123. + 100123.i 0.0265745 + 0.0265745i
\(428\) 0 0
\(429\) 4.91333e6i 1.28894i
\(430\) 0 0
\(431\) 12397.3i 0.00321464i −0.999999 0.00160732i \(-0.999488\pi\)
0.999999 0.00160732i \(-0.000511626\pi\)
\(432\) 0 0
\(433\) −203088. 203088.i −0.0520552 0.0520552i 0.680600 0.732655i \(-0.261719\pi\)
−0.732655 + 0.680600i \(0.761719\pi\)
\(434\) 0 0
\(435\) 159421. 282953.i 0.0403946 0.0716954i
\(436\) 0 0
\(437\) 2.78938e6 2.78938e6i 0.698721 0.698721i
\(438\) 0 0
\(439\) 6.21348e6 1.53877 0.769384 0.638786i \(-0.220563\pi\)
0.769384 + 0.638786i \(0.220563\pi\)
\(440\) 0 0
\(441\) −603682. −0.147813
\(442\) 0 0
\(443\) 4.93074e6 4.93074e6i 1.19372 1.19372i 0.217705 0.976015i \(-0.430143\pi\)
0.976015 0.217705i \(-0.0698571\pi\)
\(444\) 0 0
\(445\) 7.74722e6 2.16340e6i 1.85458 0.517888i
\(446\) 0 0
\(447\) 742475. + 742475.i 0.175757 + 0.175757i
\(448\) 0 0
\(449\) 3.32541e6i 0.778449i 0.921143 + 0.389224i \(0.127257\pi\)
−0.921143 + 0.389224i \(0.872743\pi\)
\(450\) 0 0
\(451\) 1.05885e7i 2.45127i
\(452\) 0 0
\(453\) 4.81873e6 + 4.81873e6i 1.10328 + 1.10328i
\(454\) 0 0
\(455\) −2.41637e6 + 674765.i −0.547185 + 0.152800i
\(456\) 0 0
\(457\) 1.03786e6 1.03786e6i 0.232460 0.232460i −0.581259 0.813719i \(-0.697440\pi\)
0.813719 + 0.581259i \(0.197440\pi\)
\(458\) 0 0
\(459\) 3.87537e6 0.858582
\(460\) 0 0
\(461\) 4.98358e6 1.09217 0.546083 0.837731i \(-0.316118\pi\)
0.546083 + 0.837731i \(0.316118\pi\)
\(462\) 0 0
\(463\) −867273. + 867273.i −0.188020 + 0.188020i −0.794839 0.606820i \(-0.792445\pi\)
0.606820 + 0.794839i \(0.292445\pi\)
\(464\) 0 0
\(465\) 1.09892e6 1.95045e6i 0.235686 0.418313i
\(466\) 0 0
\(467\) 6.21652e6 + 6.21652e6i 1.31903 + 1.31903i 0.914543 + 0.404489i \(0.132551\pi\)
0.404489 + 0.914543i \(0.367449\pi\)
\(468\) 0 0
\(469\) 6.09552e6i 1.27961i
\(470\) 0 0
\(471\) 9.55479e6i 1.98458i
\(472\) 0 0
\(473\) 1.26548e6 + 1.26548e6i 0.260077 + 0.260077i
\(474\) 0 0
\(475\) −5.35496e6 + 3.24366e6i −1.08899 + 0.659632i
\(476\) 0 0
\(477\) 2.48672e6 2.48672e6i 0.500416 0.500416i
\(478\) 0 0
\(479\) −5.54732e6 −1.10470 −0.552350 0.833612i \(-0.686269\pi\)
−0.552350 + 0.833612i \(0.686269\pi\)
\(480\) 0 0
\(481\) −5.81416e6 −1.14584
\(482\) 0 0
\(483\) 2.85934e6 2.85934e6i 0.557696 0.557696i
\(484\) 0 0
\(485\) −1.67997e6 946528.i −0.324300 0.182717i
\(486\) 0 0
\(487\) −45082.0 45082.0i −0.00861353 0.00861353i 0.702787 0.711400i \(-0.251939\pi\)
−0.711400 + 0.702787i \(0.751939\pi\)
\(488\) 0 0
\(489\) 7.74397e6i 1.46451i
\(490\) 0 0
\(491\) 4.49346e6i 0.841157i 0.907256 + 0.420579i \(0.138173\pi\)
−0.907256 + 0.420579i \(0.861827\pi\)
\(492\) 0 0
\(493\) −352615. 352615.i −0.0653406 0.0653406i
\(494\) 0 0
\(495\) −1.10432e6 3.95461e6i −0.202572 0.725422i
\(496\) 0 0
\(497\) 1.94576e6 1.94576e6i 0.353344 0.353344i
\(498\) 0 0
\(499\) 1.35470e6 0.243552 0.121776 0.992558i \(-0.461141\pi\)
0.121776 + 0.992558i \(0.461141\pi\)
\(500\) 0 0
\(501\) −2.10341e6 −0.374395
\(502\) 0 0
\(503\) 5.30723e6 5.30723e6i 0.935294 0.935294i −0.0627366 0.998030i \(-0.519983\pi\)
0.998030 + 0.0627366i \(0.0199828\pi\)
\(504\) 0 0
\(505\) 2.55588e6 + 9.15273e6i 0.445976 + 1.59706i
\(506\) 0 0
\(507\) 2.67248e6 + 2.67248e6i 0.461737 + 0.461737i
\(508\) 0 0
\(509\) 7.90014e6i 1.35158i −0.737096 0.675788i \(-0.763803\pi\)
0.737096 0.675788i \(-0.236197\pi\)
\(510\) 0 0
\(511\) 157661.i 0.0267098i
\(512\) 0 0
\(513\) −3.36685e6 3.36685e6i −0.564846 0.564846i
\(514\) 0 0
\(515\) −7.99155e6 4.50259e6i −1.32774 0.748073i
\(516\) 0 0
\(517\) −425434. + 425434.i −0.0700013 + 0.0700013i
\(518\) 0 0
\(519\) 6.50292e6 1.05972
\(520\) 0 0
\(521\) −90092.2 −0.0145410 −0.00727048 0.999974i \(-0.502314\pi\)
−0.00727048 + 0.999974i \(0.502314\pi\)
\(522\) 0 0
\(523\) 1.47517e6 1.47517e6i 0.235824 0.235824i −0.579295 0.815118i \(-0.696672\pi\)
0.815118 + 0.579295i \(0.196672\pi\)
\(524\) 0 0
\(525\) −5.48926e6 + 3.32501e6i −0.869192 + 0.526496i
\(526\) 0 0
\(527\) −2.43064e6 2.43064e6i −0.381235 0.381235i
\(528\) 0 0
\(529\) 2.55937e6i 0.397644i
\(530\) 0 0
\(531\) 1.36965e6i 0.210801i
\(532\) 0 0
\(533\) −4.98922e6 4.98922e6i −0.760702 0.760702i
\(534\) 0 0
\(535\) 2.65715e6 4.71612e6i 0.401357 0.712361i
\(536\) 0 0
\(537\) −381470. + 381470.i −0.0570854 + 0.0570854i
\(538\) 0 0
\(539\) −3.19002e6 −0.472958
\(540\) 0 0
\(541\) −1.00732e7 −1.47970 −0.739852 0.672769i \(-0.765105\pi\)
−0.739852 + 0.672769i \(0.765105\pi\)
\(542\) 0 0
\(543\) −8.56118e6 + 8.56118e6i −1.24605 + 1.24605i
\(544\) 0 0
\(545\) 1.08776e6 303754.i 0.156870 0.0438057i
\(546\) 0 0
\(547\) −1.68628e6 1.68628e6i −0.240969 0.240969i 0.576282 0.817251i \(-0.304503\pi\)
−0.817251 + 0.576282i \(0.804503\pi\)
\(548\) 0 0
\(549\) 154421.i 0.0218663i
\(550\) 0 0
\(551\) 612689.i 0.0859728i
\(552\) 0 0
\(553\) 905796. + 905796.i 0.125956 + 0.125956i
\(554\) 0 0
\(555\) −1.43251e7 + 4.00026e6i −1.97408 + 0.551259i
\(556\) 0 0
\(557\) 5.82782e6 5.82782e6i 0.795917 0.795917i −0.186532 0.982449i \(-0.559725\pi\)
0.982449 + 0.186532i \(0.0597247\pi\)
\(558\) 0 0
\(559\) 1.19257e6 0.161420
\(560\) 0 0
\(561\) −1.92987e7 −2.58893
\(562\) 0 0
\(563\) 3.92139e6 3.92139e6i 0.521397 0.521397i −0.396596 0.917993i \(-0.629809\pi\)
0.917993 + 0.396596i \(0.129809\pi\)
\(564\) 0 0
\(565\) 3.07615e6 5.45979e6i 0.405402 0.719540i
\(566\) 0 0
\(567\) −5.64123e6 5.64123e6i −0.736913 0.736913i
\(568\) 0 0
\(569\) 9.00329e6i 1.16579i −0.812547 0.582895i \(-0.801920\pi\)
0.812547 0.582895i \(-0.198080\pi\)
\(570\) 0 0
\(571\) 1.33754e7i 1.71678i 0.512995 + 0.858392i \(0.328536\pi\)
−0.512995 + 0.858392i \(0.671464\pi\)
\(572\) 0 0
\(573\) 8.30734e6 + 8.30734e6i 1.05700 + 1.05700i
\(574\) 0 0
\(575\) −1.46725e6 + 5.97563e6i −0.185070 + 0.753727i
\(576\) 0 0
\(577\) 5.22216e6 5.22216e6i 0.652996 0.652996i −0.300717 0.953713i \(-0.597226\pi\)
0.953713 + 0.300717i \(0.0972261\pi\)
\(578\) 0 0
\(579\) −581410. −0.0720752
\(580\) 0 0
\(581\) −6.90734e6 −0.848928
\(582\) 0 0
\(583\) 1.31405e7 1.31405e7i 1.60119 1.60119i
\(584\) 0 0
\(585\) −2.38374e6 1.34304e6i −0.287984 0.162256i
\(586\) 0 0
\(587\) 3.91266e6 + 3.91266e6i 0.468680 + 0.468680i 0.901487 0.432807i \(-0.142477\pi\)
−0.432807 + 0.901487i \(0.642477\pi\)
\(588\) 0 0
\(589\) 4.22338e6i 0.501616i
\(590\) 0 0
\(591\) 1.02181e6i 0.120337i
\(592\) 0 0
\(593\) −377034. 377034.i −0.0440295 0.0440295i 0.684749 0.728779i \(-0.259912\pi\)
−0.728779 + 0.684749i \(0.759912\pi\)
\(594\) 0 0
\(595\) 2.65035e6 + 9.49104e6i 0.306910 + 1.09906i
\(596\) 0 0
\(597\) −3.47220e6 + 3.47220e6i −0.398721 + 0.398721i
\(598\) 0 0
\(599\) −3.69548e6 −0.420827 −0.210413 0.977613i \(-0.567481\pi\)
−0.210413 + 0.977613i \(0.567481\pi\)
\(600\) 0 0
\(601\) −5.53615e6 −0.625204 −0.312602 0.949884i \(-0.601201\pi\)
−0.312602 + 0.949884i \(0.601201\pi\)
\(602\) 0 0
\(603\) −4.70059e6 + 4.70059e6i −0.526452 + 0.526452i
\(604\) 0 0
\(605\) −3.41408e6 1.22260e7i −0.379214 1.35798i
\(606\) 0 0
\(607\) −851040. 851040.i −0.0937515 0.0937515i 0.658676 0.752427i \(-0.271117\pi\)
−0.752427 + 0.658676i \(0.771117\pi\)
\(608\) 0 0
\(609\) 628056.i 0.0686207i
\(610\) 0 0
\(611\) 400924.i 0.0434470i
\(612\) 0 0
\(613\) −2.99552e6 2.99552e6i −0.321974 0.321974i 0.527550 0.849524i \(-0.323111\pi\)
−0.849524 + 0.527550i \(0.823111\pi\)
\(614\) 0 0
\(615\) −1.57253e7 8.85992e6i −1.67653 0.944587i
\(616\) 0 0
\(617\) 2.10245e6 2.10245e6i 0.222337 0.222337i −0.587145 0.809482i \(-0.699748\pi\)
0.809482 + 0.587145i \(0.199748\pi\)
\(618\) 0 0
\(619\) 4.83196e6 0.506870 0.253435 0.967352i \(-0.418440\pi\)
0.253435 + 0.967352i \(0.418440\pi\)
\(620\) 0 0
\(621\) −4.67960e6 −0.486944
\(622\) 0 0
\(623\) −1.09990e7 + 1.09990e7i −1.13536 + 1.13536i
\(624\) 0 0
\(625\) 4.52300e6 8.65505e6i 0.463155 0.886277i
\(626\) 0 0
\(627\) 1.67663e7 + 1.67663e7i 1.70321 + 1.70321i
\(628\) 0 0
\(629\) 2.28370e7i 2.30150i
\(630\) 0 0
\(631\) 1.27571e7i 1.27550i 0.770244 + 0.637749i \(0.220134\pi\)
−0.770244 + 0.637749i \(0.779866\pi\)
\(632\) 0 0
\(633\) 2.49544e6 + 2.49544e6i 0.247535 + 0.247535i
\(634\) 0 0
\(635\) −5.19941e6 + 9.22832e6i −0.511705 + 0.908215i
\(636\) 0 0
\(637\) −1.50312e6 + 1.50312e6i −0.146773 + 0.146773i
\(638\) 0 0
\(639\) 3.00096e6 0.290742
\(640\) 0 0
\(641\) 7.64611e6 0.735014 0.367507 0.930021i \(-0.380211\pi\)
0.367507 + 0.930021i \(0.380211\pi\)
\(642\) 0 0
\(643\) −2.54976e6 + 2.54976e6i −0.243204 + 0.243204i −0.818174 0.574970i \(-0.805014\pi\)
0.574970 + 0.818174i \(0.305014\pi\)
\(644\) 0 0
\(645\) 2.93830e6 820514.i 0.278098 0.0776581i
\(646\) 0 0
\(647\) −3.90727e6 3.90727e6i −0.366954 0.366954i 0.499411 0.866365i \(-0.333550\pi\)
−0.866365 + 0.499411i \(0.833550\pi\)
\(648\) 0 0
\(649\) 7.23760e6i 0.674501i
\(650\) 0 0
\(651\) 4.32930e6i 0.400373i
\(652\) 0 0
\(653\) −4.91675e6 4.91675e6i −0.451227 0.451227i 0.444535 0.895762i \(-0.353369\pi\)
−0.895762 + 0.444535i \(0.853369\pi\)
\(654\) 0 0
\(655\) 1.93064e7 5.39128e6i 1.75832 0.491008i
\(656\) 0 0
\(657\) 121581. 121581.i 0.0109888 0.0109888i
\(658\) 0 0
\(659\) −1.22997e6 −0.110327 −0.0551636 0.998477i \(-0.517568\pi\)
−0.0551636 + 0.998477i \(0.517568\pi\)
\(660\) 0 0
\(661\) 2.50222e6 0.222752 0.111376 0.993778i \(-0.464474\pi\)
0.111376 + 0.993778i \(0.464474\pi\)
\(662\) 0 0
\(663\) −9.09342e6 + 9.09342e6i −0.803421 + 0.803421i
\(664\) 0 0
\(665\) 5.94306e6 1.05482e7i 0.521142 0.924963i
\(666\) 0 0
\(667\) 425790. + 425790.i 0.0370579 + 0.0370579i
\(668\) 0 0
\(669\) 2.04152e7i 1.76355i
\(670\) 0 0
\(671\) 816001.i 0.0699656i
\(672\) 0 0
\(673\) 4.60945e6 + 4.60945e6i 0.392294 + 0.392294i 0.875504 0.483210i \(-0.160529\pi\)
−0.483210 + 0.875504i \(0.660529\pi\)
\(674\) 0 0
\(675\) 7.21273e6 + 1.77101e6i 0.609313 + 0.149610i
\(676\) 0 0
\(677\) 1.03990e7 1.03990e7i 0.872006 0.872006i −0.120685 0.992691i \(-0.538509\pi\)
0.992691 + 0.120685i \(0.0385091\pi\)
\(678\) 0 0
\(679\) 3.72894e6 0.310392
\(680\) 0 0
\(681\) −964776. −0.0797185
\(682\) 0 0
\(683\) 1.39930e7 1.39930e7i 1.14778 1.14778i 0.160795 0.986988i \(-0.448594\pi\)
0.986988 0.160795i \(-0.0514059\pi\)
\(684\) 0 0
\(685\) −1.07467e7 6.05490e6i −0.875084 0.493038i
\(686\) 0 0
\(687\) −2.07763e7 2.07763e7i −1.67949 1.67949i
\(688\) 0 0
\(689\) 1.23835e7i 0.993791i
\(690\) 0 0
\(691\) 9.98056e6i 0.795169i 0.917565 + 0.397585i \(0.130152\pi\)
−0.917565 + 0.397585i \(0.869848\pi\)
\(692\) 0 0
\(693\) 5.61451e6 + 5.61451e6i 0.444098 + 0.444098i
\(694\) 0 0
\(695\) −3.18468e6 1.14045e7i −0.250095 0.895601i
\(696\) 0 0
\(697\) −1.95968e7 + 1.95968e7i −1.52793 + 1.52793i
\(698\) 0 0
\(699\) 1.04580e7 0.809573
\(700\) 0 0
\(701\) −7.67178e6 −0.589659 −0.294830 0.955550i \(-0.595263\pi\)
−0.294830 + 0.955550i \(0.595263\pi\)
\(702\) 0 0
\(703\) 1.98403e7 1.98403e7i 1.51412 1.51412i
\(704\) 0 0
\(705\) 275844. + 987810.i 0.0209021 + 0.0748515i
\(706\) 0 0
\(707\) −1.29945e7 1.29945e7i −0.977710 0.977710i
\(708\) 0 0
\(709\) 1.61069e7i 1.20336i −0.798737 0.601681i \(-0.794498\pi\)
0.798737 0.601681i \(-0.205502\pi\)
\(710\) 0 0
\(711\) 1.39702e6i 0.103640i
\(712\) 0 0
\(713\) 2.93505e6 + 2.93505e6i 0.216218 + 0.216218i
\(714\) 0 0
\(715\) −1.25963e7 7.09701e6i −0.921465 0.519171i
\(716\) 0 0
\(717\) 1.10659e7 1.10659e7i 0.803874 0.803874i
\(718\) 0 0
\(719\) 9.25776e6 0.667857 0.333929 0.942598i \(-0.391626\pi\)
0.333929 + 0.942598i \(0.391626\pi\)
\(720\) 0 0
\(721\) 1.77384e7 1.27080
\(722\) 0 0
\(723\) 1.87604e6 1.87604e6i 0.133474 0.133474i
\(724\) 0 0
\(725\) −495135. 817418.i −0.0349847 0.0577563i
\(726\) 0 0
\(727\) −1.17208e7 1.17208e7i −0.822475 0.822475i 0.163988 0.986462i \(-0.447564\pi\)
−0.986462 + 0.163988i \(0.947564\pi\)
\(728\) 0 0
\(729\) 2.27081e6i 0.158257i
\(730\) 0 0
\(731\) 4.68421e6i 0.324223i
\(732\) 0 0
\(733\) 5.35037e6 + 5.35037e6i 0.367811 + 0.367811i 0.866678 0.498868i \(-0.166251\pi\)
−0.498868 + 0.866678i \(0.666251\pi\)
\(734\) 0 0
\(735\) −2.66926e6 + 4.73762e6i −0.182252 + 0.323476i
\(736\) 0 0
\(737\) −2.48392e7 + 2.48392e7i −1.68449 + 1.68449i
\(738\) 0 0
\(739\) −2.80515e7 −1.88949 −0.944746 0.327803i \(-0.893692\pi\)
−0.944746 + 0.327803i \(0.893692\pi\)
\(740\) 0 0
\(741\) 1.58004e7 1.05711
\(742\) 0 0
\(743\) 3.89759e6 3.89759e6i 0.259014 0.259014i −0.565639 0.824653i \(-0.691370\pi\)
0.824653 + 0.565639i \(0.191370\pi\)
\(744\) 0 0
\(745\) 2.97595e6 831028.i 0.196442 0.0548561i
\(746\) 0 0
\(747\) −5.32663e6 5.32663e6i −0.349262 0.349262i
\(748\) 0 0
\(749\) 1.04681e7i 0.681810i
\(750\) 0 0
\(751\) 1.33082e6i 0.0861032i 0.999073 + 0.0430516i \(0.0137080\pi\)
−0.999073 + 0.0430516i \(0.986292\pi\)
\(752\) 0 0
\(753\) 1.70409e7 + 1.70409e7i 1.09523 + 1.09523i
\(754\) 0 0
\(755\) 1.93142e7 5.39344e6i 1.23313 0.344349i
\(756\) 0 0
\(757\) −4.82595e6 + 4.82595e6i −0.306085 + 0.306085i −0.843389 0.537303i \(-0.819443\pi\)
0.537303 + 0.843389i \(0.319443\pi\)
\(758\) 0 0
\(759\) 2.33035e7 1.46831
\(760\) 0 0
\(761\) −1.62700e7 −1.01842 −0.509210 0.860642i \(-0.670062\pi\)
−0.509210 + 0.860642i \(0.670062\pi\)
\(762\) 0 0
\(763\) −1.54433e6 + 1.54433e6i −0.0960349 + 0.0960349i
\(764\) 0 0
\(765\) −5.27523e6 + 9.36289e6i −0.325902 + 0.578437i
\(766\) 0 0
\(767\) −3.41032e6 3.41032e6i −0.209318 0.209318i
\(768\) 0 0
\(769\) 7.50924e6i 0.457910i 0.973437 + 0.228955i \(0.0735308\pi\)
−0.973437 + 0.228955i \(0.926469\pi\)
\(770\) 0 0
\(771\) 2.13069e6i 0.129088i
\(772\) 0 0
\(773\) −2.21009e6 2.21009e6i −0.133034 0.133034i 0.637454 0.770488i \(-0.279987\pi\)
−0.770488 + 0.637454i \(0.779987\pi\)
\(774\) 0 0
\(775\) −3.41305e6 5.63461e6i −0.204121 0.336984i
\(776\) 0 0
\(777\) 2.03379e7 2.03379e7i 1.20852 1.20852i
\(778\) 0 0
\(779\) 3.40505e7 2.01039
\(780\) 0 0
\(781\) 1.58579e7 0.930289
\(782\) 0 0
\(783\) 513939. 513939.i 0.0299576 0.0299576i
\(784\) 0 0
\(785\) 2.44957e7 + 1.38013e7i 1.41878 + 0.799368i
\(786\) 0 0
\(787\) −6.25543e6 6.25543e6i −0.360015 0.360015i 0.503803 0.863818i \(-0.331934\pi\)
−0.863818 + 0.503803i \(0.831934\pi\)
\(788\) 0 0
\(789\) 2.01649e7i 1.15320i
\(790\) 0 0
\(791\) 1.21188e7i 0.688681i
\(792\) 0 0
\(793\) 384495. + 384495.i 0.0217124 + 0.0217124i