Properties

Label 160.4.c.c.129.4
Level $160$
Weight $4$
Character 160.129
Analytic conductor $9.440$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(129,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44030560092\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 129.4
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 160.129
Dual form 160.4.c.c.129.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.23607i q^{3} -11.1803 q^{5} -33.5967i q^{7} -58.3050 q^{9} +O(q^{10})\) \(q+9.23607i q^{3} -11.1803 q^{5} -33.5967i q^{7} -58.3050 q^{9} -103.262i q^{15} +310.302 q^{21} -73.8723i q^{23} +125.000 q^{25} -289.135i q^{27} -306.000 q^{29} +375.623i q^{35} -460.630 q^{41} -563.092i q^{43} +651.869 q^{45} +41.1184i q^{47} -785.741 q^{49} -40.2492 q^{61} +1958.86i q^{63} -1.16335i q^{67} +682.289 q^{69} +1154.51i q^{75} +1096.23 q^{81} +989.604i q^{83} -2826.24i q^{87} +1386.00 q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 108 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 108 q^{9} + 472 q^{21} + 500 q^{25} - 1224 q^{29} + 1400 q^{45} - 1372 q^{49} - 616 q^{69} + 1004 q^{81} + 5544 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.23607i 1.77748i 0.458410 + 0.888741i \(0.348419\pi\)
−0.458410 + 0.888741i \(0.651581\pi\)
\(4\) 0 0
\(5\) −11.1803 −1.00000
\(6\) 0 0
\(7\) − 33.5967i − 1.81405i −0.421073 0.907027i \(-0.638346\pi\)
0.421073 0.907027i \(-0.361654\pi\)
\(8\) 0 0
\(9\) −58.3050 −2.15944
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) − 103.262i − 1.77748i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 310.302 3.22445
\(22\) 0 0
\(23\) − 73.8723i − 0.669715i −0.942269 0.334857i \(-0.891312\pi\)
0.942269 0.334857i \(-0.108688\pi\)
\(24\) 0 0
\(25\) 125.000 1.00000
\(26\) 0 0
\(27\) − 289.135i − 2.06089i
\(28\) 0 0
\(29\) −306.000 −1.95941 −0.979703 0.200455i \(-0.935758\pi\)
−0.979703 + 0.200455i \(0.935758\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 375.623i 1.81405i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −460.630 −1.75459 −0.877297 0.479949i \(-0.840655\pi\)
−0.877297 + 0.479949i \(0.840655\pi\)
\(42\) 0 0
\(43\) − 563.092i − 1.99699i −0.0548071 0.998497i \(-0.517454\pi\)
0.0548071 0.998497i \(-0.482546\pi\)
\(44\) 0 0
\(45\) 651.869 2.15944
\(46\) 0 0
\(47\) 41.1184i 0.127611i 0.997962 + 0.0638057i \(0.0203238\pi\)
−0.997962 + 0.0638057i \(0.979676\pi\)
\(48\) 0 0
\(49\) −785.741 −2.29079
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −40.2492 −0.0844817 −0.0422409 0.999107i \(-0.513450\pi\)
−0.0422409 + 0.999107i \(0.513450\pi\)
\(62\) 0 0
\(63\) 1958.86i 3.91735i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.16335i − 0.00212127i −0.999999 0.00106064i \(-0.999662\pi\)
0.999999 0.00106064i \(-0.000337611\pi\)
\(68\) 0 0
\(69\) 682.289 1.19041
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 1154.51i 1.77748i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1096.23 1.50375
\(82\) 0 0
\(83\) 989.604i 1.30871i 0.756186 + 0.654357i \(0.227060\pi\)
−0.756186 + 0.654357i \(0.772940\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 2826.24i − 3.48281i
\(88\) 0 0
\(89\) 1386.00 1.65074 0.825369 0.564593i \(-0.190967\pi\)
0.825369 + 0.564593i \(0.190967\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −378.000 −0.372400 −0.186200 0.982512i \(-0.559617\pi\)
−0.186200 + 0.982512i \(0.559617\pi\)
\(102\) 0 0
\(103\) 663.360i 0.634590i 0.948327 + 0.317295i \(0.102775\pi\)
−0.948327 + 0.317295i \(0.897225\pi\)
\(104\) 0 0
\(105\) −3469.28 −3.22445
\(106\) 0 0
\(107\) 1328.60i 1.20038i 0.799859 + 0.600188i \(0.204907\pi\)
−0.799859 + 0.600188i \(0.795093\pi\)
\(108\) 0 0
\(109\) −1972.21 −1.73306 −0.866530 0.499124i \(-0.833655\pi\)
−0.866530 + 0.499124i \(0.833655\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 825.917i 0.669715i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 0 0
\(123\) − 4254.41i − 3.11876i
\(124\) 0 0
\(125\) −1397.54 −1.00000
\(126\) 0 0
\(127\) − 2795.12i − 1.95297i −0.215593 0.976483i \(-0.569168\pi\)
0.215593 0.976483i \(-0.430832\pi\)
\(128\) 0 0
\(129\) 5200.76 3.54962
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3232.62i 2.06089i
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −379.772 −0.226827
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3421.18 1.95941
\(146\) 0 0
\(147\) − 7257.16i − 4.07184i
\(148\) 0 0
\(149\) 1909.60 1.04994 0.524969 0.851121i \(-0.324077\pi\)
0.524969 + 0.851121i \(0.324077\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2481.87 −1.21490
\(162\) 0 0
\(163\) 2927.35i 1.40667i 0.710858 + 0.703336i \(0.248307\pi\)
−0.710858 + 0.703336i \(0.751693\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1448.07i 0.670989i 0.942042 + 0.335494i \(0.108903\pi\)
−0.942042 + 0.335494i \(0.891097\pi\)
\(168\) 0 0
\(169\) 2197.00 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) − 4199.59i − 1.81405i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 1078.00 0.442691 0.221346 0.975195i \(-0.428955\pi\)
0.221346 + 0.975195i \(0.428955\pi\)
\(182\) 0 0
\(183\) − 371.745i − 0.150165i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −9713.98 −3.73856
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 10.7447 0.00377052
\(202\) 0 0
\(203\) 10280.6i 3.55447i
\(204\) 0 0
\(205\) 5150.00 1.75459
\(206\) 0 0
\(207\) 4307.12i 1.44621i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6295.56i 1.99699i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 5946.57i − 1.78570i −0.450352 0.892851i \(-0.648701\pi\)
0.450352 0.892851i \(-0.351299\pi\)
\(224\) 0 0
\(225\) −7288.12 −2.15944
\(226\) 0 0
\(227\) − 1484.93i − 0.434176i −0.976152 0.217088i \(-0.930344\pi\)
0.976152 0.217088i \(-0.0696558\pi\)
\(228\) 0 0
\(229\) −6874.00 −1.98361 −0.991805 0.127761i \(-0.959221\pi\)
−0.991805 + 0.127761i \(0.959221\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) − 459.718i − 0.127611i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 7285.11 1.94720 0.973600 0.228261i \(-0.0733041\pi\)
0.973600 + 0.228261i \(0.0733041\pi\)
\(242\) 0 0
\(243\) 2318.25i 0.612000i
\(244\) 0 0
\(245\) 8784.86 2.29079
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −9140.05 −2.32621
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 17841.3 4.23122
\(262\) 0 0
\(263\) − 5594.38i − 1.31165i −0.754912 0.655826i \(-0.772321\pi\)
0.754912 0.655826i \(-0.227679\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 12801.2i 2.93416i
\(268\) 0 0
\(269\) 6864.73 1.55595 0.777974 0.628297i \(-0.216248\pi\)
0.777974 + 0.628297i \(0.216248\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4288.78 −0.910488 −0.455244 0.890367i \(-0.650448\pi\)
−0.455244 + 0.890367i \(0.650448\pi\)
\(282\) 0 0
\(283\) − 7390.02i − 1.55227i −0.630569 0.776133i \(-0.717178\pi\)
0.630569 0.776133i \(-0.282822\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15475.7i 3.18293i
\(288\) 0 0
\(289\) 4913.00 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −18918.1 −3.62265
\(302\) 0 0
\(303\) − 3491.23i − 0.661934i
\(304\) 0 0
\(305\) 450.000 0.0844817
\(306\) 0 0
\(307\) − 9817.46i − 1.82512i −0.408942 0.912560i \(-0.634102\pi\)
0.408942 0.912560i \(-0.365898\pi\)
\(308\) 0 0
\(309\) −6126.84 −1.12797
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) − 21900.7i − 3.91735i
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12271.0 −2.13365
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 18215.5i − 3.08048i
\(328\) 0 0
\(329\) 1381.44 0.231494
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 13.0066i 0.00212127i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 14874.7i 2.34157i
\(344\) 0 0
\(345\) −7628.23 −1.19041
\(346\) 0 0
\(347\) 3222.21i 0.498494i 0.968440 + 0.249247i \(0.0801832\pi\)
−0.968440 + 0.249247i \(0.919817\pi\)
\(348\) 0 0
\(349\) 9646.00 1.47948 0.739740 0.672893i \(-0.234948\pi\)
0.739740 + 0.672893i \(0.234948\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) − 12293.2i − 1.77748i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7199.45i 1.02400i 0.858985 + 0.512000i \(0.171095\pi\)
−0.858985 + 0.512000i \(0.828905\pi\)
\(368\) 0 0
\(369\) 26857.0 3.78894
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) − 12907.8i − 1.77748i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 25815.9 3.47136
\(382\) 0 0
\(383\) − 14935.2i − 1.99257i −0.0861026 0.996286i \(-0.527441\pi\)
0.0861026 0.996286i \(-0.472559\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 32831.1i 4.31239i
\(388\) 0 0
\(389\) −5854.03 −0.763010 −0.381505 0.924367i \(-0.624594\pi\)
−0.381505 + 0.924367i \(0.624594\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15822.0 −1.97036 −0.985178 0.171534i \(-0.945128\pi\)
−0.985178 + 0.171534i \(0.945128\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −12256.3 −1.50375
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 15817.9 1.91234 0.956170 0.292812i \(-0.0945911\pi\)
0.956170 + 0.292812i \(0.0945911\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 11064.1i − 1.30871i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −14369.0 −1.66342 −0.831711 0.555208i \(-0.812638\pi\)
−0.831711 + 0.555208i \(0.812638\pi\)
\(422\) 0 0
\(423\) − 2397.41i − 0.275569i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1352.24i 0.153254i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 31598.3i 3.48281i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 45812.6 4.94683
\(442\) 0 0
\(443\) − 1925.54i − 0.206512i −0.994655 0.103256i \(-0.967074\pi\)
0.994655 0.103256i \(-0.0329261\pi\)
\(444\) 0 0
\(445\) −15496.0 −1.65074
\(446\) 0 0
\(447\) 17637.2i 1.86625i
\(448\) 0 0
\(449\) −18939.5 −1.99067 −0.995334 0.0964880i \(-0.969239\pi\)
−0.995334 + 0.0964880i \(0.969239\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16002.0 −1.61668 −0.808338 0.588719i \(-0.799632\pi\)
−0.808338 + 0.588719i \(0.799632\pi\)
\(462\) 0 0
\(463\) 19792.7i 1.98671i 0.115094 + 0.993355i \(0.463283\pi\)
−0.115094 + 0.993355i \(0.536717\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 19782.6i − 1.96024i −0.198408 0.980120i \(-0.563577\pi\)
0.198408 0.980120i \(-0.436423\pi\)
\(468\) 0 0
\(469\) −39.0846 −0.00384810
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 22922.7i − 2.15946i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15117.6i 1.40666i 0.710865 + 0.703328i \(0.248304\pi\)
−0.710865 + 0.703328i \(0.751696\pi\)
\(488\) 0 0
\(489\) −27037.2 −2.50033
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) −13374.5 −1.19267
\(502\) 0 0
\(503\) 22321.9i 1.97870i 0.145556 + 0.989350i \(0.453503\pi\)
−0.145556 + 0.989350i \(0.546497\pi\)
\(504\) 0 0
\(505\) 4226.17 0.372400
\(506\) 0 0
\(507\) 20291.6i 1.77748i
\(508\) 0 0
\(509\) −8946.00 −0.779026 −0.389513 0.921021i \(-0.627357\pi\)
−0.389513 + 0.921021i \(0.627357\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 7416.59i − 0.634590i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8442.00 0.709886 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(522\) 0 0
\(523\) 23257.2i 1.94449i 0.233967 + 0.972245i \(0.424829\pi\)
−0.233967 + 0.972245i \(0.575171\pi\)
\(524\) 0 0
\(525\) 38787.7 3.22445
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 6709.89 0.551482
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 14854.1i − 1.20038i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −6802.00 −0.540556 −0.270278 0.962782i \(-0.587116\pi\)
−0.270278 + 0.962782i \(0.587116\pi\)
\(542\) 0 0
\(543\) 9956.48i 0.786876i
\(544\) 0 0
\(545\) 22050.0 1.73306
\(546\) 0 0
\(547\) − 21368.0i − 1.67026i −0.550055 0.835129i \(-0.685393\pi\)
0.550055 0.835129i \(-0.314607\pi\)
\(548\) 0 0
\(549\) 2346.73 0.182433
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 17129.5i − 1.28228i −0.767425 0.641139i \(-0.778462\pi\)
0.767425 0.641139i \(-0.221538\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 36829.9i − 2.72788i
\(568\) 0 0
\(569\) 22758.7 1.67679 0.838396 0.545062i \(-0.183494\pi\)
0.838396 + 0.545062i \(0.183494\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 9234.04i − 0.669715i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 33247.5 2.37408
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 28042.6i − 1.97179i −0.167367 0.985895i \(-0.553527\pi\)
0.167367 0.985895i \(-0.446473\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −7365.61 −0.499916 −0.249958 0.968257i \(-0.580417\pi\)
−0.249958 + 0.968257i \(0.580417\pi\)
\(602\) 0 0
\(603\) 67.8288i 0.00458077i
\(604\) 0 0
\(605\) 14881.0 1.00000
\(606\) 0 0
\(607\) − 29345.3i − 1.96226i −0.193359 0.981128i \(-0.561938\pi\)
0.193359 0.981128i \(-0.438062\pi\)
\(608\) 0 0
\(609\) −94952.4 −6.31800
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 47565.8i 3.11876i
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −21359.0 −1.38021
\(622\) 0 0
\(623\) − 46565.1i − 2.99453i
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 31250.4i 1.95297i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −24449.2 −1.50653 −0.753264 0.657719i \(-0.771522\pi\)
−0.753264 + 0.657719i \(0.771522\pi\)
\(642\) 0 0
\(643\) 15039.5i 0.922397i 0.887297 + 0.461199i \(0.152580\pi\)
−0.887297 + 0.461199i \(0.847420\pi\)
\(644\) 0 0
\(645\) −58146.2 −3.54962
\(646\) 0 0
\(647\) 10474.8i 0.636488i 0.948009 + 0.318244i \(0.103093\pi\)
−0.948009 + 0.318244i \(0.896907\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 14610.5 0.859730 0.429865 0.902893i \(-0.358561\pi\)
0.429865 + 0.902893i \(0.358561\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 22604.9i 1.31224i
\(668\) 0 0
\(669\) 54922.9 3.17405
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) − 36141.8i − 2.06089i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 13714.9 0.771740
\(682\) 0 0
\(683\) − 28871.4i − 1.61747i −0.588172 0.808736i \(-0.700152\pi\)
0.588172 0.808736i \(-0.299848\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 63488.7i − 3.52583i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 35844.2 1.93126 0.965632 0.259914i \(-0.0836943\pi\)
0.965632 + 0.259914i \(0.0836943\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 4245.98 0.226827
\(706\) 0 0
\(707\) 12699.6i 0.675554i
\(708\) 0 0
\(709\) −506.000 −0.0268029 −0.0134014 0.999910i \(-0.504266\pi\)
−0.0134014 + 0.999910i \(0.504266\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 22286.7 1.15118
\(722\) 0 0
\(723\) 67285.8i 3.46111i
\(724\) 0 0
\(725\) −38250.0 −1.95941
\(726\) 0 0
\(727\) 20462.3i 1.04389i 0.852980 + 0.521943i \(0.174793\pi\)
−0.852980 + 0.521943i \(0.825207\pi\)
\(728\) 0 0
\(729\) 8186.77 0.415931
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 81137.5i 4.07184i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 29337.4i − 1.44856i −0.689504 0.724282i \(-0.742171\pi\)
0.689504 0.724282i \(-0.257829\pi\)
\(744\) 0 0
\(745\) −21350.0 −1.04994
\(746\) 0 0
\(747\) − 57698.8i − 2.82609i
\(748\) 0 0
\(749\) 44636.5 2.17755
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21798.0 −1.03834 −0.519170 0.854671i \(-0.673759\pi\)
−0.519170 + 0.854671i \(0.673759\pi\)
\(762\) 0 0
\(763\) 66259.9i 3.14387i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 29554.0 1.38588 0.692942 0.720994i \(-0.256314\pi\)
0.692942 + 0.720994i \(0.256314\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 88475.2i 4.03812i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 43886.2i − 1.98777i −0.110421 0.993885i \(-0.535220\pi\)
0.110421 0.993885i \(-0.464780\pi\)
\(788\) 0 0
\(789\) 51670.1 2.33144
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −80810.7 −3.56467
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 27748.1 1.21490
\(806\) 0 0
\(807\) 63403.1i 2.76567i
\(808\) 0 0
\(809\) −26406.0 −1.14757 −0.573786 0.819005i \(-0.694526\pi\)
−0.573786 + 0.819005i \(0.694526\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 32728.7i − 1.40667i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −46425.2 −1.97351 −0.986755 0.162216i \(-0.948136\pi\)
−0.986755 + 0.162216i \(0.948136\pi\)
\(822\) 0 0
\(823\) − 2462.17i − 0.104284i −0.998640 0.0521422i \(-0.983395\pi\)
0.998640 0.0521422i \(-0.0166049\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 24981.0i − 1.05039i −0.850981 0.525197i \(-0.823992\pi\)
0.850981 0.525197i \(-0.176008\pi\)
\(828\) 0 0
\(829\) −30951.7 −1.29674 −0.648369 0.761326i \(-0.724548\pi\)
−0.648369 + 0.761326i \(0.724548\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 16189.9i − 0.670989i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 69247.0 2.83927
\(842\) 0 0
\(843\) − 39611.4i − 1.61838i
\(844\) 0 0
\(845\) −24563.2 −1.00000
\(846\) 0 0
\(847\) 44717.3i 1.81405i
\(848\) 0 0
\(849\) 68254.8 2.75913
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) −142934. −5.65759
\(862\) 0 0
\(863\) − 14929.2i − 0.588871i −0.955671 0.294436i \(-0.904868\pi\)
0.955671 0.294436i \(-0.0951316\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 45376.8i 1.77748i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 46952.9i 1.81405i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42847.5 1.63856 0.819279 0.573395i \(-0.194374\pi\)
0.819279 + 0.573395i \(0.194374\pi\)
\(882\) 0 0
\(883\) 49120.7i 1.87208i 0.351899 + 0.936038i \(0.385536\pi\)
−0.351899 + 0.936038i \(0.614464\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 40099.7i − 1.51794i −0.651124 0.758971i \(-0.725702\pi\)
0.651124 0.758971i \(-0.274298\pi\)
\(888\) 0 0
\(889\) −93906.9 −3.54279
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) − 174729.i − 6.43920i
\(904\) 0 0
\(905\) −12052.4 −0.442691
\(906\) 0 0
\(907\) − 45878.4i − 1.67957i −0.542921 0.839784i \(-0.682682\pi\)
0.542921 0.839784i \(-0.317318\pi\)
\(908\) 0 0
\(909\) 22039.3 0.804177
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 4156.23i 0.150165i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 90674.7 3.24412
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 38677.2i − 1.37036i
\(928\) 0 0
\(929\) 18054.0 0.637603 0.318801 0.947822i \(-0.396720\pi\)
0.318801 + 0.947822i \(0.396720\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 44478.0 1.54085 0.770426 0.637530i \(-0.220044\pi\)
0.770426 + 0.637530i \(0.220044\pi\)
\(942\) 0 0
\(943\) 34027.8i 1.17508i
\(944\) 0 0
\(945\) 108606. 3.73856
\(946\) 0 0
\(947\) 55305.3i 1.89776i 0.315635 + 0.948881i \(0.397782\pi\)
−0.315635 + 0.948881i \(0.602218\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29791.0 −1.00000
\(962\) 0 0
\(963\) − 77463.7i − 2.59214i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 11343.4i − 0.377228i −0.982051 0.188614i \(-0.939600\pi\)
0.982051 0.188614i \(-0.0603995\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 114990. 3.74245
\(982\) 0 0
\(983\) 60188.2i 1.95290i 0.215735 + 0.976452i \(0.430785\pi\)
−0.215735 + 0.976452i \(0.569215\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 12759.1i 0.411476i
\(988\) 0 0
\(989\) −41596.9 −1.33742
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.4.c.c.129.4 yes 4
3.2 odd 2 1440.4.f.g.289.3 4
4.3 odd 2 inner 160.4.c.c.129.1 4
5.2 odd 4 800.4.a.t.1.2 2
5.3 odd 4 800.4.a.l.1.1 2
5.4 even 2 inner 160.4.c.c.129.1 4
8.3 odd 2 320.4.c.f.129.4 4
8.5 even 2 320.4.c.f.129.1 4
12.11 even 2 1440.4.f.g.289.4 4
15.14 odd 2 1440.4.f.g.289.4 4
20.3 even 4 800.4.a.t.1.2 2
20.7 even 4 800.4.a.l.1.1 2
20.19 odd 2 CM 160.4.c.c.129.4 yes 4
40.3 even 4 1600.4.a.cb.1.1 2
40.13 odd 4 1600.4.a.cp.1.2 2
40.19 odd 2 320.4.c.f.129.1 4
40.27 even 4 1600.4.a.cp.1.2 2
40.29 even 2 320.4.c.f.129.4 4
40.37 odd 4 1600.4.a.cb.1.1 2
60.59 even 2 1440.4.f.g.289.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.c.c.129.1 4 4.3 odd 2 inner
160.4.c.c.129.1 4 5.4 even 2 inner
160.4.c.c.129.4 yes 4 1.1 even 1 trivial
160.4.c.c.129.4 yes 4 20.19 odd 2 CM
320.4.c.f.129.1 4 8.5 even 2
320.4.c.f.129.1 4 40.19 odd 2
320.4.c.f.129.4 4 8.3 odd 2
320.4.c.f.129.4 4 40.29 even 2
800.4.a.l.1.1 2 5.3 odd 4
800.4.a.l.1.1 2 20.7 even 4
800.4.a.t.1.2 2 5.2 odd 4
800.4.a.t.1.2 2 20.3 even 4
1440.4.f.g.289.3 4 3.2 odd 2
1440.4.f.g.289.3 4 60.59 even 2
1440.4.f.g.289.4 4 12.11 even 2
1440.4.f.g.289.4 4 15.14 odd 2
1600.4.a.cb.1.1 2 40.3 even 4
1600.4.a.cb.1.1 2 40.37 odd 4
1600.4.a.cp.1.2 2 40.13 odd 4
1600.4.a.cp.1.2 2 40.27 even 4