Properties

Label 160.4.c.c.129.2
Level $160$
Weight $4$
Character 160.129
Analytic conductor $9.440$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(129,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44030560092\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 129.2
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 160.129
Dual form 160.4.c.c.129.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.76393i q^{3} +11.1803 q^{5} -15.5967i q^{7} +4.30495 q^{9} -53.2624i q^{15} -74.3018 q^{21} -207.872i q^{23} +125.000 q^{25} -149.135i q^{27} -306.000 q^{29} -174.377i q^{35} +460.630 q^{41} +30.9079i q^{43} +48.1308 q^{45} +643.118i q^{47} +99.7415 q^{49} +40.2492 q^{61} -67.1432i q^{63} +1096.84i q^{67} -990.289 q^{69} -595.492i q^{75} -594.234 q^{81} +1143.60i q^{83} +1457.76i q^{87} +1386.00 q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 108 q^{9} + 472 q^{21} + 500 q^{25} - 1224 q^{29} + 1400 q^{45} - 1372 q^{49} - 616 q^{69} + 1004 q^{81} + 5544 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 4.76393i − 0.916819i −0.888741 0.458410i \(-0.848419\pi\)
0.888741 0.458410i \(-0.151581\pi\)
\(4\) 0 0
\(5\) 11.1803 1.00000
\(6\) 0 0
\(7\) − 15.5967i − 0.842145i −0.907027 0.421073i \(-0.861654\pi\)
0.907027 0.421073i \(-0.138346\pi\)
\(8\) 0 0
\(9\) 4.30495 0.159443
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) − 53.2624i − 0.916819i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −74.3018 −0.772095
\(22\) 0 0
\(23\) − 207.872i − 1.88454i −0.334857 0.942269i \(-0.608688\pi\)
0.334857 0.942269i \(-0.391312\pi\)
\(24\) 0 0
\(25\) 125.000 1.00000
\(26\) 0 0
\(27\) − 149.135i − 1.06300i
\(28\) 0 0
\(29\) −306.000 −1.95941 −0.979703 0.200455i \(-0.935758\pi\)
−0.979703 + 0.200455i \(0.935758\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 174.377i − 0.842145i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 460.630 1.75459 0.877297 0.479949i \(-0.159345\pi\)
0.877297 + 0.479949i \(0.159345\pi\)
\(42\) 0 0
\(43\) 30.9079i 0.109614i 0.998497 + 0.0548071i \(0.0174544\pi\)
−0.998497 + 0.0548071i \(0.982546\pi\)
\(44\) 0 0
\(45\) 48.1308 0.159443
\(46\) 0 0
\(47\) 643.118i 1.99592i 0.0638057 + 0.997962i \(0.479676\pi\)
−0.0638057 + 0.997962i \(0.520324\pi\)
\(48\) 0 0
\(49\) 99.7415 0.290791
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 40.2492 0.0844817 0.0422409 0.999107i \(-0.486550\pi\)
0.0422409 + 0.999107i \(0.486550\pi\)
\(62\) 0 0
\(63\) − 67.1432i − 0.134274i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1096.84i 2.00000i 0.00106064 + 0.999999i \(0.499662\pi\)
−0.00106064 + 0.999999i \(0.500338\pi\)
\(68\) 0 0
\(69\) −990.289 −1.72778
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) − 595.492i − 0.916819i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −594.234 −0.815135
\(82\) 0 0
\(83\) 1143.60i 1.51237i 0.654357 + 0.756186i \(0.272940\pi\)
−0.654357 + 0.756186i \(0.727060\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1457.76i 1.79642i
\(88\) 0 0
\(89\) 1386.00 1.65074 0.825369 0.564593i \(-0.190967\pi\)
0.825369 + 0.564593i \(0.190967\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −378.000 −0.372400 −0.186200 0.982512i \(-0.559617\pi\)
−0.186200 + 0.982512i \(0.559617\pi\)
\(102\) 0 0
\(103\) − 1982.64i − 1.89665i −0.317295 0.948327i \(-0.602775\pi\)
0.317295 0.948327i \(-0.397225\pi\)
\(104\) 0 0
\(105\) −830.720 −0.772095
\(106\) 0 0
\(107\) 1770.60i 1.59972i 0.600188 + 0.799859i \(0.295093\pi\)
−0.600188 + 0.799859i \(0.704907\pi\)
\(108\) 0 0
\(109\) 1972.21 1.73306 0.866530 0.499124i \(-0.166345\pi\)
0.866530 + 0.499124i \(0.166345\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) − 2324.08i − 1.88454i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 0 0
\(123\) − 2194.41i − 1.60864i
\(124\) 0 0
\(125\) 1397.54 1.00000
\(126\) 0 0
\(127\) − 617.120i − 0.431185i −0.976483 0.215593i \(-0.930832\pi\)
0.976483 0.215593i \(-0.0691683\pi\)
\(128\) 0 0
\(129\) 147.243 0.100496
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 1667.38i − 1.06300i
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 3063.77 1.82990
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −3421.18 −1.95941
\(146\) 0 0
\(147\) − 475.162i − 0.266603i
\(148\) 0 0
\(149\) −1909.60 −1.04994 −0.524969 0.851121i \(-0.675923\pi\)
−0.524969 + 0.851121i \(0.675923\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3242.13 −1.58705
\(162\) 0 0
\(163\) − 2958.65i − 1.42172i −0.703336 0.710858i \(-0.748307\pi\)
0.703336 0.710858i \(-0.251693\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4066.07i 1.88408i 0.335494 + 0.942042i \(0.391097\pi\)
−0.335494 + 0.942042i \(0.608903\pi\)
\(168\) 0 0
\(169\) 2197.00 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) − 1949.59i − 0.842145i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 1078.00 0.442691 0.221346 0.975195i \(-0.428955\pi\)
0.221346 + 0.975195i \(0.428955\pi\)
\(182\) 0 0
\(183\) − 191.745i − 0.0774545i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2326.02 −0.895200
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 5225.26 1.83364
\(202\) 0 0
\(203\) 4772.60i 1.65010i
\(204\) 0 0
\(205\) 5150.00 1.75459
\(206\) 0 0
\(207\) − 894.880i − 0.300476i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 345.561i 0.109614i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2999.43i 0.900703i 0.892851 + 0.450352i \(0.148701\pi\)
−0.892851 + 0.450352i \(0.851299\pi\)
\(224\) 0 0
\(225\) 538.119 0.159443
\(226\) 0 0
\(227\) 6677.07i 1.95230i 0.217088 + 0.976152i \(0.430344\pi\)
−0.217088 + 0.976152i \(0.569656\pi\)
\(228\) 0 0
\(229\) −6874.00 −1.98361 −0.991805 0.127761i \(-0.959221\pi\)
−0.991805 + 0.127761i \(0.959221\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 7190.28i 1.99592i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −7285.11 −1.94720 −0.973600 0.228261i \(-0.926696\pi\)
−0.973600 + 0.228261i \(0.926696\pi\)
\(242\) 0 0
\(243\) − 1195.75i − 0.315667i
\(244\) 0 0
\(245\) 1115.14 0.290791
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 5448.05 1.38657
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1317.32 −0.312413
\(262\) 0 0
\(263\) 6439.62i 1.50982i 0.655826 + 0.754912i \(0.272321\pi\)
−0.655826 + 0.754912i \(0.727679\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 6602.81i − 1.51343i
\(268\) 0 0
\(269\) −6864.73 −1.55595 −0.777974 0.628297i \(-0.783752\pi\)
−0.777974 + 0.628297i \(0.783752\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4288.78 0.910488 0.455244 0.890367i \(-0.349552\pi\)
0.455244 + 0.890367i \(0.349552\pi\)
\(282\) 0 0
\(283\) − 6004.02i − 1.26114i −0.776133 0.630569i \(-0.782822\pi\)
0.776133 0.630569i \(-0.217178\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 7184.33i − 1.47762i
\(288\) 0 0
\(289\) 4913.00 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 482.063 0.0923111
\(302\) 0 0
\(303\) 1800.77i 0.341424i
\(304\) 0 0
\(305\) 450.000 0.0844817
\(306\) 0 0
\(307\) − 4399.46i − 0.817884i −0.912560 0.408942i \(-0.865898\pi\)
0.912560 0.408942i \(-0.134102\pi\)
\(308\) 0 0
\(309\) −9445.16 −1.73889
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) − 750.684i − 0.134274i
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 8434.99 1.46665
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 9395.48i − 1.58890i
\(328\) 0 0
\(329\) 10030.6 1.68086
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 12263.0i 2.00000i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 6905.33i − 1.08703i
\(344\) 0 0
\(345\) −11071.8 −1.72778
\(346\) 0 0
\(347\) − 12519.8i − 1.93688i −0.249247 0.968440i \(-0.580183\pi\)
0.249247 0.968440i \(-0.419817\pi\)
\(348\) 0 0
\(349\) 9646.00 1.47948 0.739740 0.672893i \(-0.234948\pi\)
0.739740 + 0.672893i \(0.234948\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 6340.79i 0.916819i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 12078.6i − 1.71797i −0.512000 0.858985i \(-0.671095\pi\)
0.512000 0.858985i \(-0.328905\pi\)
\(368\) 0 0
\(369\) 1982.99 0.279757
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) − 6657.80i − 0.916819i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −2939.92 −0.395319
\(382\) 0 0
\(383\) 1290.76i 0.172205i 0.996286 + 0.0861026i \(0.0274413\pi\)
−0.996286 + 0.0861026i \(0.972559\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 133.057i 0.0174772i
\(388\) 0 0
\(389\) 5854.03 0.763010 0.381505 0.924367i \(-0.375406\pi\)
0.381505 + 0.924367i \(0.375406\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15822.0 −1.97036 −0.985178 0.171534i \(-0.945128\pi\)
−0.985178 + 0.171534i \(0.945128\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −6643.73 −0.815135
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −15817.9 −1.91234 −0.956170 0.292812i \(-0.905409\pi\)
−0.956170 + 0.292812i \(0.905409\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12785.9i 1.51237i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 14369.0 1.66342 0.831711 0.555208i \(-0.187362\pi\)
0.831711 + 0.555208i \(0.187362\pi\)
\(422\) 0 0
\(423\) 2768.59i 0.318236i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 627.757i − 0.0711459i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 16298.3i 1.79642i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 429.382 0.0463646
\(442\) 0 0
\(443\) 18548.5i 1.98931i 0.103256 + 0.994655i \(0.467074\pi\)
−0.103256 + 0.994655i \(0.532926\pi\)
\(444\) 0 0
\(445\) 15496.0 1.65074
\(446\) 0 0
\(447\) 9097.21i 0.962603i
\(448\) 0 0
\(449\) 18939.5 1.99067 0.995334 0.0964880i \(-0.0307609\pi\)
0.995334 + 0.0964880i \(0.0307609\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16002.0 −1.61668 −0.808338 0.588719i \(-0.799632\pi\)
−0.808338 + 0.588719i \(0.799632\pi\)
\(462\) 0 0
\(463\) − 2293.27i − 0.230188i −0.993355 0.115094i \(-0.963283\pi\)
0.993355 0.115094i \(-0.0367169\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 4004.65i − 0.396816i −0.980120 0.198408i \(-0.936423\pi\)
0.980120 0.198408i \(-0.0635770\pi\)
\(468\) 0 0
\(469\) 17107.1 1.68429
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 15445.3i 1.45504i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15279.6i 1.42173i 0.703328 + 0.710865i \(0.251696\pi\)
−0.703328 + 0.710865i \(0.748304\pi\)
\(488\) 0 0
\(489\) −14094.8 −1.30346
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 19370.5 1.72736
\(502\) 0 0
\(503\) − 3284.06i − 0.291111i −0.989350 0.145556i \(-0.953503\pi\)
0.989350 0.145556i \(-0.0464970\pi\)
\(504\) 0 0
\(505\) −4226.17 −0.372400
\(506\) 0 0
\(507\) − 10466.4i − 0.916819i
\(508\) 0 0
\(509\) −8946.00 −0.779026 −0.389513 0.921021i \(-0.627357\pi\)
−0.389513 + 0.921021i \(0.627357\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 22166.6i − 1.89665i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8442.00 0.709886 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(522\) 0 0
\(523\) − 5596.77i − 0.467934i −0.972245 0.233967i \(-0.924829\pi\)
0.972245 0.233967i \(-0.0751708\pi\)
\(524\) 0 0
\(525\) −9287.73 −0.772095
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −31043.9 −2.55148
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 19795.9i 1.59972i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −6802.00 −0.540556 −0.270278 0.962782i \(-0.587116\pi\)
−0.270278 + 0.962782i \(0.587116\pi\)
\(542\) 0 0
\(543\) − 5135.52i − 0.405868i
\(544\) 0 0
\(545\) 22050.0 1.73306
\(546\) 0 0
\(547\) 14074.0i 1.10011i 0.835129 + 0.550055i \(0.185393\pi\)
−0.835129 + 0.550055i \(0.814607\pi\)
\(548\) 0 0
\(549\) 173.271 0.0134700
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 20503.5i − 1.53485i −0.641139 0.767425i \(-0.721538\pi\)
0.641139 0.767425i \(-0.278462\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9268.11i 0.686462i
\(568\) 0 0
\(569\) −22758.7 −1.67679 −0.838396 0.545062i \(-0.816506\pi\)
−0.838396 + 0.545062i \(0.816506\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 25984.0i − 1.88454i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 17836.5 1.27364
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 4760.56i − 0.334735i −0.985895 0.167367i \(-0.946473\pi\)
0.985895 0.167367i \(-0.0535266\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 7365.61 0.499916 0.249958 0.968257i \(-0.419583\pi\)
0.249958 + 0.968257i \(0.419583\pi\)
\(602\) 0 0
\(603\) 4721.83i 0.318885i
\(604\) 0 0
\(605\) −14881.0 −1.00000
\(606\) 0 0
\(607\) − 5783.31i − 0.386717i −0.981128 0.193359i \(-0.938062\pi\)
0.981128 0.193359i \(-0.0619381\pi\)
\(608\) 0 0
\(609\) 22736.4 1.51285
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) − 24534.2i − 1.60864i
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −31001.0 −2.00326
\(622\) 0 0
\(623\) − 21617.1i − 1.39016i
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 6899.61i − 0.431185i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24449.2 1.50653 0.753264 0.657719i \(-0.228478\pi\)
0.753264 + 0.657719i \(0.228478\pi\)
\(642\) 0 0
\(643\) − 28934.5i − 1.77459i −0.461199 0.887297i \(-0.652580\pi\)
0.461199 0.887297i \(-0.347420\pi\)
\(644\) 0 0
\(645\) 1646.23 0.100496
\(646\) 0 0
\(647\) − 31203.2i − 1.89602i −0.318244 0.948009i \(-0.603093\pi\)
0.318244 0.948009i \(-0.396907\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −14610.5 −0.859730 −0.429865 0.902893i \(-0.641439\pi\)
−0.429865 + 0.902893i \(0.641439\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 63608.9i 3.69257i
\(668\) 0 0
\(669\) 14289.1 0.825782
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) − 18641.8i − 1.06300i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 31809.1 1.78991
\(682\) 0 0
\(683\) − 20997.4i − 1.17634i −0.808736 0.588172i \(-0.799848\pi\)
0.808736 0.588172i \(-0.200152\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 32747.3i 1.81861i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −35844.2 −1.93126 −0.965632 0.259914i \(-0.916306\pi\)
−0.965632 + 0.259914i \(0.916306\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 34254.0 1.82990
\(706\) 0 0
\(707\) 5895.57i 0.313615i
\(708\) 0 0
\(709\) −506.000 −0.0268029 −0.0134014 0.999910i \(-0.504266\pi\)
−0.0134014 + 0.999910i \(0.504266\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −30922.7 −1.59726
\(722\) 0 0
\(723\) 34705.8i 1.78523i
\(724\) 0 0
\(725\) −38250.0 −1.95941
\(726\) 0 0
\(727\) 33440.3i 1.70596i 0.521943 + 0.852980i \(0.325207\pi\)
−0.521943 + 0.852980i \(0.674793\pi\)
\(728\) 0 0
\(729\) −21740.8 −1.10455
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) − 5312.47i − 0.266603i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27928.6i 1.37901i 0.724282 + 0.689504i \(0.242171\pi\)
−0.724282 + 0.689504i \(0.757829\pi\)
\(744\) 0 0
\(745\) −21350.0 −1.04994
\(746\) 0 0
\(747\) 4923.16i 0.241137i
\(748\) 0 0
\(749\) 27615.5 1.34720
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21798.0 −1.03834 −0.519170 0.854671i \(-0.673759\pi\)
−0.519170 + 0.854671i \(0.673759\pi\)
\(762\) 0 0
\(763\) − 30760.1i − 1.45949i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 29554.0 1.38588 0.692942 0.720994i \(-0.256314\pi\)
0.692942 + 0.720994i \(0.256314\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 45635.2i 2.08285i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4875.78i 0.220842i 0.993885 + 0.110421i \(0.0352199\pi\)
−0.993885 + 0.110421i \(0.964780\pi\)
\(788\) 0 0
\(789\) 30677.9 1.38424
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 5966.66 0.263198
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −36248.1 −1.58705
\(806\) 0 0
\(807\) 32703.1i 1.42652i
\(808\) 0 0
\(809\) −26406.0 −1.14757 −0.573786 0.819005i \(-0.694526\pi\)
−0.573786 + 0.819005i \(0.694526\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 33078.7i − 1.42172i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 46425.2 1.97351 0.986755 0.162216i \(-0.0518641\pi\)
0.986755 + 0.162216i \(0.0518641\pi\)
\(822\) 0 0
\(823\) − 47156.2i − 1.99728i −0.0521422 0.998640i \(-0.516605\pi\)
0.0521422 0.998640i \(-0.483395\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 40477.0i 1.70196i 0.525197 + 0.850981i \(0.323992\pi\)
−0.525197 + 0.850981i \(0.676008\pi\)
\(828\) 0 0
\(829\) 30951.7 1.29674 0.648369 0.761326i \(-0.275452\pi\)
0.648369 + 0.761326i \(0.275452\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 45460.1i 1.88408i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 69247.0 2.83927
\(842\) 0 0
\(843\) − 20431.4i − 0.834753i
\(844\) 0 0
\(845\) 24563.2 1.00000
\(846\) 0 0
\(847\) 20759.3i 0.842145i
\(848\) 0 0
\(849\) −28602.8 −1.15624
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) −34225.7 −1.35471
\(862\) 0 0
\(863\) 48456.8i 1.91134i 0.294436 + 0.955671i \(0.404868\pi\)
−0.294436 + 0.955671i \(0.595132\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 23405.2i − 0.916819i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 21797.1i − 0.842145i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −42847.5 −1.63856 −0.819279 0.573395i \(-0.805626\pi\)
−0.819279 + 0.573395i \(0.805626\pi\)
\(882\) 0 0
\(883\) 18466.7i 0.703798i 0.936038 + 0.351899i \(0.114464\pi\)
−0.936038 + 0.351899i \(0.885536\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 34401.7i − 1.30225i −0.758971 0.651124i \(-0.774298\pi\)
0.758971 0.651124i \(-0.225702\pi\)
\(888\) 0 0
\(889\) −9625.06 −0.363121
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) − 2296.51i − 0.0846326i
\(904\) 0 0
\(905\) 12052.4 0.442691
\(906\) 0 0
\(907\) − 29660.4i − 1.08584i −0.839784 0.542921i \(-0.817318\pi\)
0.839784 0.542921i \(-0.182682\pi\)
\(908\) 0 0
\(909\) −1627.27 −0.0593765
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 2143.77i − 0.0774545i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −20958.7 −0.749852
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 8535.17i − 0.302407i
\(928\) 0 0
\(929\) −18054.0 −0.637603 −0.318801 0.947822i \(-0.603280\pi\)
−0.318801 + 0.947822i \(0.603280\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 44478.0 1.54085 0.770426 0.637530i \(-0.220044\pi\)
0.770426 + 0.637530i \(0.220044\pi\)
\(942\) 0 0
\(943\) − 95752.2i − 3.30660i
\(944\) 0 0
\(945\) −26005.6 −0.895200
\(946\) 0 0
\(947\) − 18396.7i − 0.631271i −0.948881 0.315635i \(-0.897782\pi\)
0.948881 0.315635i \(-0.102218\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29791.0 −1.00000
\(962\) 0 0
\(963\) 7622.33i 0.255063i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 59061.4i − 1.96410i −0.188614 0.982051i \(-0.560400\pi\)
0.188614 0.982051i \(-0.439600\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 8490.28 0.276324
\(982\) 0 0
\(983\) − 13297.8i − 0.431470i −0.976452 0.215735i \(-0.930785\pi\)
0.976452 0.215735i \(-0.0692147\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 47784.9i − 1.54104i
\(988\) 0 0
\(989\) 6424.90 0.206572
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.4.c.c.129.2 4
3.2 odd 2 1440.4.f.g.289.1 4
4.3 odd 2 inner 160.4.c.c.129.3 yes 4
5.2 odd 4 800.4.a.l.1.2 2
5.3 odd 4 800.4.a.t.1.1 2
5.4 even 2 inner 160.4.c.c.129.3 yes 4
8.3 odd 2 320.4.c.f.129.2 4
8.5 even 2 320.4.c.f.129.3 4
12.11 even 2 1440.4.f.g.289.2 4
15.14 odd 2 1440.4.f.g.289.2 4
20.3 even 4 800.4.a.l.1.2 2
20.7 even 4 800.4.a.t.1.1 2
20.19 odd 2 CM 160.4.c.c.129.2 4
40.3 even 4 1600.4.a.cp.1.1 2
40.13 odd 4 1600.4.a.cb.1.2 2
40.19 odd 2 320.4.c.f.129.3 4
40.27 even 4 1600.4.a.cb.1.2 2
40.29 even 2 320.4.c.f.129.2 4
40.37 odd 4 1600.4.a.cp.1.1 2
60.59 even 2 1440.4.f.g.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.c.c.129.2 4 1.1 even 1 trivial
160.4.c.c.129.2 4 20.19 odd 2 CM
160.4.c.c.129.3 yes 4 4.3 odd 2 inner
160.4.c.c.129.3 yes 4 5.4 even 2 inner
320.4.c.f.129.2 4 8.3 odd 2
320.4.c.f.129.2 4 40.29 even 2
320.4.c.f.129.3 4 8.5 even 2
320.4.c.f.129.3 4 40.19 odd 2
800.4.a.l.1.2 2 5.2 odd 4
800.4.a.l.1.2 2 20.3 even 4
800.4.a.t.1.1 2 5.3 odd 4
800.4.a.t.1.1 2 20.7 even 4
1440.4.f.g.289.1 4 3.2 odd 2
1440.4.f.g.289.1 4 60.59 even 2
1440.4.f.g.289.2 4 12.11 even 2
1440.4.f.g.289.2 4 15.14 odd 2
1600.4.a.cb.1.2 2 40.13 odd 4
1600.4.a.cb.1.2 2 40.27 even 4
1600.4.a.cp.1.1 2 40.3 even 4
1600.4.a.cp.1.1 2 40.37 odd 4