Properties

Label 160.4.c.b.129.4
Level $160$
Weight $4$
Character 160.129
Analytic conductor $9.440$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(129,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44030560092\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{29})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 15x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.4
Root \(3.19258i\) of defining polynomial
Character \(\chi\) \(=\) 160.129
Dual form 160.4.c.b.129.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{3} +(-3.00000 + 10.7703i) q^{5} +4.00000i q^{7} +11.0000 q^{9} -43.0813 q^{11} +21.5407i q^{13} +(-43.0813 - 12.0000i) q^{15} -43.0813i q^{17} -129.244 q^{19} -16.0000 q^{21} +52.0000i q^{23} +(-107.000 - 64.6220i) q^{25} +152.000i q^{27} +158.000 q^{29} -172.325 q^{31} -172.325i q^{33} +(-43.0813 - 12.0000i) q^{35} +280.029i q^{37} -86.1626 q^{39} -170.000 q^{41} -316.000i q^{43} +(-33.0000 + 118.474i) q^{45} +244.000i q^{47} +327.000 q^{49} +172.325 q^{51} +495.435i q^{53} +(129.244 - 464.000i) q^{55} -516.976i q^{57} +646.220 q^{59} +82.0000 q^{61} +44.0000i q^{63} +(-232.000 - 64.6220i) q^{65} +692.000i q^{67} -208.000 q^{69} +947.789 q^{71} -430.813i q^{73} +(258.488 - 428.000i) q^{75} -172.325i q^{77} +344.651 q^{79} -311.000 q^{81} -940.000i q^{83} +(464.000 + 129.244i) q^{85} +632.000i q^{87} -6.00000 q^{89} -86.1626 q^{91} -689.301i q^{93} +(387.732 - 1392.00i) q^{95} +1077.03i q^{97} -473.895 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{5} + 44 q^{9} - 64 q^{21} - 428 q^{25} + 632 q^{29} - 680 q^{41} - 132 q^{45} + 1308 q^{49} + 328 q^{61} - 928 q^{65} - 832 q^{69} - 1244 q^{81} + 1856 q^{85} - 24 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.00000i 0.769800i 0.922958 + 0.384900i \(0.125764\pi\)
−0.922958 + 0.384900i \(0.874236\pi\)
\(4\) 0 0
\(5\) −3.00000 + 10.7703i −0.268328 + 0.963328i
\(6\) 0 0
\(7\) 4.00000i 0.215980i 0.994152 + 0.107990i \(0.0344414\pi\)
−0.994152 + 0.107990i \(0.965559\pi\)
\(8\) 0 0
\(9\) 11.0000 0.407407
\(10\) 0 0
\(11\) −43.0813 −1.18086 −0.590432 0.807087i \(-0.701043\pi\)
−0.590432 + 0.807087i \(0.701043\pi\)
\(12\) 0 0
\(13\) 21.5407i 0.459562i 0.973242 + 0.229781i \(0.0738010\pi\)
−0.973242 + 0.229781i \(0.926199\pi\)
\(14\) 0 0
\(15\) −43.0813 12.0000i −0.741570 0.206559i
\(16\) 0 0
\(17\) 43.0813i 0.614633i −0.951607 0.307316i \(-0.900569\pi\)
0.951607 0.307316i \(-0.0994310\pi\)
\(18\) 0 0
\(19\) −129.244 −1.56056 −0.780279 0.625432i \(-0.784923\pi\)
−0.780279 + 0.625432i \(0.784923\pi\)
\(20\) 0 0
\(21\) −16.0000 −0.166261
\(22\) 0 0
\(23\) 52.0000i 0.471424i 0.971823 + 0.235712i \(0.0757422\pi\)
−0.971823 + 0.235712i \(0.924258\pi\)
\(24\) 0 0
\(25\) −107.000 64.6220i −0.856000 0.516976i
\(26\) 0 0
\(27\) 152.000i 1.08342i
\(28\) 0 0
\(29\) 158.000 1.01172 0.505860 0.862616i \(-0.331175\pi\)
0.505860 + 0.862616i \(0.331175\pi\)
\(30\) 0 0
\(31\) −172.325 −0.998404 −0.499202 0.866486i \(-0.666373\pi\)
−0.499202 + 0.866486i \(0.666373\pi\)
\(32\) 0 0
\(33\) 172.325i 0.909030i
\(34\) 0 0
\(35\) −43.0813 12.0000i −0.208059 0.0579534i
\(36\) 0 0
\(37\) 280.029i 1.24423i 0.782927 + 0.622114i \(0.213726\pi\)
−0.782927 + 0.622114i \(0.786274\pi\)
\(38\) 0 0
\(39\) −86.1626 −0.353771
\(40\) 0 0
\(41\) −170.000 −0.647550 −0.323775 0.946134i \(-0.604952\pi\)
−0.323775 + 0.946134i \(0.604952\pi\)
\(42\) 0 0
\(43\) 316.000i 1.12069i −0.828260 0.560344i \(-0.810669\pi\)
0.828260 0.560344i \(-0.189331\pi\)
\(44\) 0 0
\(45\) −33.0000 + 118.474i −0.109319 + 0.392467i
\(46\) 0 0
\(47\) 244.000i 0.757257i 0.925549 + 0.378628i \(0.123604\pi\)
−0.925549 + 0.378628i \(0.876396\pi\)
\(48\) 0 0
\(49\) 327.000 0.953353
\(50\) 0 0
\(51\) 172.325 0.473144
\(52\) 0 0
\(53\) 495.435i 1.28402i 0.766695 + 0.642012i \(0.221900\pi\)
−0.766695 + 0.642012i \(0.778100\pi\)
\(54\) 0 0
\(55\) 129.244 464.000i 0.316859 1.13756i
\(56\) 0 0
\(57\) 516.976i 1.20132i
\(58\) 0 0
\(59\) 646.220 1.42594 0.712972 0.701193i \(-0.247349\pi\)
0.712972 + 0.701193i \(0.247349\pi\)
\(60\) 0 0
\(61\) 82.0000 0.172115 0.0860576 0.996290i \(-0.472573\pi\)
0.0860576 + 0.996290i \(0.472573\pi\)
\(62\) 0 0
\(63\) 44.0000i 0.0879917i
\(64\) 0 0
\(65\) −232.000 64.6220i −0.442709 0.123313i
\(66\) 0 0
\(67\) 692.000i 1.26181i 0.775860 + 0.630905i \(0.217316\pi\)
−0.775860 + 0.630905i \(0.782684\pi\)
\(68\) 0 0
\(69\) −208.000 −0.362902
\(70\) 0 0
\(71\) 947.789 1.58425 0.792126 0.610358i \(-0.208974\pi\)
0.792126 + 0.610358i \(0.208974\pi\)
\(72\) 0 0
\(73\) 430.813i 0.690724i −0.938470 0.345362i \(-0.887756\pi\)
0.938470 0.345362i \(-0.112244\pi\)
\(74\) 0 0
\(75\) 258.488 428.000i 0.397968 0.658949i
\(76\) 0 0
\(77\) 172.325i 0.255043i
\(78\) 0 0
\(79\) 344.651 0.490838 0.245419 0.969417i \(-0.421074\pi\)
0.245419 + 0.969417i \(0.421074\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) 940.000i 1.24311i −0.783369 0.621557i \(-0.786501\pi\)
0.783369 0.621557i \(-0.213499\pi\)
\(84\) 0 0
\(85\) 464.000 + 129.244i 0.592093 + 0.164923i
\(86\) 0 0
\(87\) 632.000i 0.778822i
\(88\) 0 0
\(89\) −6.00000 −0.00714605 −0.00357303 0.999994i \(-0.501137\pi\)
−0.00357303 + 0.999994i \(0.501137\pi\)
\(90\) 0 0
\(91\) −86.1626 −0.0992560
\(92\) 0 0
\(93\) 689.301i 0.768572i
\(94\) 0 0
\(95\) 387.732 1392.00i 0.418742 1.50333i
\(96\) 0 0
\(97\) 1077.03i 1.12738i 0.825985 + 0.563691i \(0.190619\pi\)
−0.825985 + 0.563691i \(0.809381\pi\)
\(98\) 0 0
\(99\) −473.895 −0.481093
\(100\) 0 0
\(101\) 1014.00 0.998978 0.499489 0.866320i \(-0.333521\pi\)
0.499489 + 0.866320i \(0.333521\pi\)
\(102\) 0 0
\(103\) 44.0000i 0.0420917i −0.999779 0.0210459i \(-0.993300\pi\)
0.999779 0.0210459i \(-0.00669960\pi\)
\(104\) 0 0
\(105\) 48.0000 172.325i 0.0446126 0.160164i
\(106\) 0 0
\(107\) 1812.00i 1.63713i 0.574416 + 0.818564i \(0.305229\pi\)
−0.574416 + 0.818564i \(0.694771\pi\)
\(108\) 0 0
\(109\) −2014.00 −1.76978 −0.884891 0.465798i \(-0.845767\pi\)
−0.884891 + 0.465798i \(0.845767\pi\)
\(110\) 0 0
\(111\) −1120.11 −0.957807
\(112\) 0 0
\(113\) 1637.09i 1.36287i 0.731878 + 0.681436i \(0.238644\pi\)
−0.731878 + 0.681436i \(0.761356\pi\)
\(114\) 0 0
\(115\) −560.057 156.000i −0.454136 0.126496i
\(116\) 0 0
\(117\) 236.947i 0.187229i
\(118\) 0 0
\(119\) 172.325 0.132748
\(120\) 0 0
\(121\) 525.000 0.394440
\(122\) 0 0
\(123\) 680.000i 0.498484i
\(124\) 0 0
\(125\) 1017.00 958.559i 0.727706 0.685889i
\(126\) 0 0
\(127\) 2788.00i 1.94799i 0.226565 + 0.973996i \(0.427250\pi\)
−0.226565 + 0.973996i \(0.572750\pi\)
\(128\) 0 0
\(129\) 1264.00 0.862705
\(130\) 0 0
\(131\) 43.0813 0.0287331 0.0143665 0.999897i \(-0.495427\pi\)
0.0143665 + 0.999897i \(0.495427\pi\)
\(132\) 0 0
\(133\) 516.976i 0.337049i
\(134\) 0 0
\(135\) −1637.09 456.000i −1.04369 0.290713i
\(136\) 0 0
\(137\) 473.895i 0.295529i −0.989023 0.147765i \(-0.952792\pi\)
0.989023 0.147765i \(-0.0472078\pi\)
\(138\) 0 0
\(139\) −2110.98 −1.28814 −0.644070 0.764967i \(-0.722755\pi\)
−0.644070 + 0.764967i \(0.722755\pi\)
\(140\) 0 0
\(141\) −976.000 −0.582936
\(142\) 0 0
\(143\) 928.000i 0.542680i
\(144\) 0 0
\(145\) −474.000 + 1701.71i −0.271473 + 0.974617i
\(146\) 0 0
\(147\) 1308.00i 0.733891i
\(148\) 0 0
\(149\) −2550.00 −1.40204 −0.701021 0.713141i \(-0.747272\pi\)
−0.701021 + 0.713141i \(0.747272\pi\)
\(150\) 0 0
\(151\) −2154.07 −1.16090 −0.580448 0.814297i \(-0.697123\pi\)
−0.580448 + 0.814297i \(0.697123\pi\)
\(152\) 0 0
\(153\) 473.895i 0.250406i
\(154\) 0 0
\(155\) 516.976 1856.00i 0.267900 0.961790i
\(156\) 0 0
\(157\) 3554.21i 1.80673i −0.428872 0.903365i \(-0.641089\pi\)
0.428872 0.903365i \(-0.358911\pi\)
\(158\) 0 0
\(159\) −1981.74 −0.988442
\(160\) 0 0
\(161\) −208.000 −0.101818
\(162\) 0 0
\(163\) 228.000i 0.109560i 0.998498 + 0.0547802i \(0.0174458\pi\)
−0.998498 + 0.0547802i \(0.982554\pi\)
\(164\) 0 0
\(165\) 1856.00 + 516.976i 0.875693 + 0.243918i
\(166\) 0 0
\(167\) 372.000i 0.172373i 0.996279 + 0.0861863i \(0.0274680\pi\)
−0.996279 + 0.0861863i \(0.972532\pi\)
\(168\) 0 0
\(169\) 1733.00 0.788803
\(170\) 0 0
\(171\) −1421.68 −0.635783
\(172\) 0 0
\(173\) 1917.12i 0.842519i −0.906940 0.421260i \(-0.861588\pi\)
0.906940 0.421260i \(-0.138412\pi\)
\(174\) 0 0
\(175\) 258.488 428.000i 0.111656 0.184879i
\(176\) 0 0
\(177\) 2584.88i 1.09769i
\(178\) 0 0
\(179\) 2800.29 1.16929 0.584646 0.811289i \(-0.301234\pi\)
0.584646 + 0.811289i \(0.301234\pi\)
\(180\) 0 0
\(181\) 1542.00 0.633237 0.316619 0.948553i \(-0.397452\pi\)
0.316619 + 0.948553i \(0.397452\pi\)
\(182\) 0 0
\(183\) 328.000i 0.132494i
\(184\) 0 0
\(185\) −3016.00 840.086i −1.19860 0.333861i
\(186\) 0 0
\(187\) 1856.00i 0.725798i
\(188\) 0 0
\(189\) −608.000 −0.233997
\(190\) 0 0
\(191\) 4480.46 1.69735 0.848677 0.528912i \(-0.177400\pi\)
0.848677 + 0.528912i \(0.177400\pi\)
\(192\) 0 0
\(193\) 2541.80i 0.947993i 0.880527 + 0.473996i \(0.157189\pi\)
−0.880527 + 0.473996i \(0.842811\pi\)
\(194\) 0 0
\(195\) 258.488 928.000i 0.0949267 0.340797i
\(196\) 0 0
\(197\) 2735.66i 0.989381i 0.869069 + 0.494690i \(0.164718\pi\)
−0.869069 + 0.494690i \(0.835282\pi\)
\(198\) 0 0
\(199\) 258.488 0.0920790 0.0460395 0.998940i \(-0.485340\pi\)
0.0460395 + 0.998940i \(0.485340\pi\)
\(200\) 0 0
\(201\) −2768.00 −0.971342
\(202\) 0 0
\(203\) 632.000i 0.218511i
\(204\) 0 0
\(205\) 510.000 1830.96i 0.173756 0.623803i
\(206\) 0 0
\(207\) 572.000i 0.192062i
\(208\) 0 0
\(209\) 5568.00 1.84281
\(210\) 0 0
\(211\) 904.708 0.295178 0.147589 0.989049i \(-0.452849\pi\)
0.147589 + 0.989049i \(0.452849\pi\)
\(212\) 0 0
\(213\) 3791.16i 1.21956i
\(214\) 0 0
\(215\) 3403.42 + 948.000i 1.07959 + 0.300712i
\(216\) 0 0
\(217\) 689.301i 0.215635i
\(218\) 0 0
\(219\) 1723.25 0.531720
\(220\) 0 0
\(221\) 928.000 0.282462
\(222\) 0 0
\(223\) 4284.00i 1.28645i −0.765678 0.643224i \(-0.777596\pi\)
0.765678 0.643224i \(-0.222404\pi\)
\(224\) 0 0
\(225\) −1177.00 710.842i −0.348741 0.210620i
\(226\) 0 0
\(227\) 4956.00i 1.44908i −0.689232 0.724540i \(-0.742052\pi\)
0.689232 0.724540i \(-0.257948\pi\)
\(228\) 0 0
\(229\) −1770.00 −0.510764 −0.255382 0.966840i \(-0.582201\pi\)
−0.255382 + 0.966840i \(0.582201\pi\)
\(230\) 0 0
\(231\) 689.301 0.196332
\(232\) 0 0
\(233\) 5428.25i 1.52625i −0.646251 0.763125i \(-0.723664\pi\)
0.646251 0.763125i \(-0.276336\pi\)
\(234\) 0 0
\(235\) −2627.96 732.000i −0.729486 0.203193i
\(236\) 0 0
\(237\) 1378.60i 0.377847i
\(238\) 0 0
\(239\) 5514.41 1.49246 0.746229 0.665689i \(-0.231862\pi\)
0.746229 + 0.665689i \(0.231862\pi\)
\(240\) 0 0
\(241\) −1618.00 −0.432467 −0.216233 0.976342i \(-0.569377\pi\)
−0.216233 + 0.976342i \(0.569377\pi\)
\(242\) 0 0
\(243\) 2860.00i 0.755017i
\(244\) 0 0
\(245\) −981.000 + 3521.90i −0.255811 + 0.918391i
\(246\) 0 0
\(247\) 2784.00i 0.717173i
\(248\) 0 0
\(249\) 3760.00 0.956949
\(250\) 0 0
\(251\) 4954.35 1.24588 0.622940 0.782270i \(-0.285938\pi\)
0.622940 + 0.782270i \(0.285938\pi\)
\(252\) 0 0
\(253\) 2240.23i 0.556688i
\(254\) 0 0
\(255\) −516.976 + 1856.00i −0.126958 + 0.455793i
\(256\) 0 0
\(257\) 4652.78i 1.12931i −0.825327 0.564655i \(-0.809009\pi\)
0.825327 0.564655i \(-0.190991\pi\)
\(258\) 0 0
\(259\) −1120.11 −0.268728
\(260\) 0 0
\(261\) 1738.00 0.412182
\(262\) 0 0
\(263\) 604.000i 0.141613i −0.997490 0.0708065i \(-0.977443\pi\)
0.997490 0.0708065i \(-0.0225573\pi\)
\(264\) 0 0
\(265\) −5336.00 1486.31i −1.23694 0.344540i
\(266\) 0 0
\(267\) 24.0000i 0.00550103i
\(268\) 0 0
\(269\) −3262.00 −0.739359 −0.369680 0.929159i \(-0.620533\pi\)
−0.369680 + 0.929159i \(0.620533\pi\)
\(270\) 0 0
\(271\) −2067.90 −0.463528 −0.231764 0.972772i \(-0.574450\pi\)
−0.231764 + 0.972772i \(0.574450\pi\)
\(272\) 0 0
\(273\) 344.651i 0.0764073i
\(274\) 0 0
\(275\) 4609.70 + 2784.00i 1.01082 + 0.610478i
\(276\) 0 0
\(277\) 1227.82i 0.266326i 0.991094 + 0.133163i \(0.0425134\pi\)
−0.991094 + 0.133163i \(0.957487\pi\)
\(278\) 0 0
\(279\) −1895.58 −0.406757
\(280\) 0 0
\(281\) −1290.00 −0.273861 −0.136931 0.990581i \(-0.543724\pi\)
−0.136931 + 0.990581i \(0.543724\pi\)
\(282\) 0 0
\(283\) 692.000i 0.145354i 0.997356 + 0.0726769i \(0.0231542\pi\)
−0.997356 + 0.0726769i \(0.976846\pi\)
\(284\) 0 0
\(285\) 5568.00 + 1550.93i 1.15726 + 0.322347i
\(286\) 0 0
\(287\) 680.000i 0.139858i
\(288\) 0 0
\(289\) 3057.00 0.622227
\(290\) 0 0
\(291\) −4308.13 −0.867860
\(292\) 0 0
\(293\) 5535.95i 1.10380i 0.833910 + 0.551900i \(0.186097\pi\)
−0.833910 + 0.551900i \(0.813903\pi\)
\(294\) 0 0
\(295\) −1938.66 + 6960.00i −0.382621 + 1.37365i
\(296\) 0 0
\(297\) 6548.36i 1.27938i
\(298\) 0 0
\(299\) −1120.11 −0.216648
\(300\) 0 0
\(301\) 1264.00 0.242046
\(302\) 0 0
\(303\) 4056.00i 0.769014i
\(304\) 0 0
\(305\) −246.000 + 883.167i −0.0461833 + 0.165803i
\(306\) 0 0
\(307\) 7436.00i 1.38239i −0.722666 0.691197i \(-0.757084\pi\)
0.722666 0.691197i \(-0.242916\pi\)
\(308\) 0 0
\(309\) 176.000 0.0324022
\(310\) 0 0
\(311\) −2498.72 −0.455592 −0.227796 0.973709i \(-0.573152\pi\)
−0.227796 + 0.973709i \(0.573152\pi\)
\(312\) 0 0
\(313\) 2714.12i 0.490132i 0.969506 + 0.245066i \(0.0788096\pi\)
−0.969506 + 0.245066i \(0.921190\pi\)
\(314\) 0 0
\(315\) −473.895 132.000i −0.0847649 0.0236107i
\(316\) 0 0
\(317\) 3295.72i 0.583931i 0.956429 + 0.291965i \(0.0943092\pi\)
−0.956429 + 0.291965i \(0.905691\pi\)
\(318\) 0 0
\(319\) −6806.85 −1.19470
\(320\) 0 0
\(321\) −7248.00 −1.26026
\(322\) 0 0
\(323\) 5568.00i 0.959170i
\(324\) 0 0
\(325\) 1392.00 2304.85i 0.237582 0.393385i
\(326\) 0 0
\(327\) 8056.00i 1.36238i
\(328\) 0 0
\(329\) −976.000 −0.163552
\(330\) 0 0
\(331\) −2972.61 −0.493624 −0.246812 0.969063i \(-0.579383\pi\)
−0.246812 + 0.969063i \(0.579383\pi\)
\(332\) 0 0
\(333\) 3080.31i 0.506907i
\(334\) 0 0
\(335\) −7453.07 2076.00i −1.21554 0.338579i
\(336\) 0 0
\(337\) 9133.24i 1.47632i 0.674627 + 0.738159i \(0.264305\pi\)
−0.674627 + 0.738159i \(0.735695\pi\)
\(338\) 0 0
\(339\) −6548.36 −1.04914
\(340\) 0 0
\(341\) 7424.00 1.17898
\(342\) 0 0
\(343\) 2680.00i 0.421885i
\(344\) 0 0
\(345\) 624.000 2240.23i 0.0973769 0.349594i
\(346\) 0 0
\(347\) 5916.00i 0.915238i −0.889148 0.457619i \(-0.848702\pi\)
0.889148 0.457619i \(-0.151298\pi\)
\(348\) 0 0
\(349\) −7522.00 −1.15371 −0.576853 0.816848i \(-0.695719\pi\)
−0.576853 + 0.816848i \(0.695719\pi\)
\(350\) 0 0
\(351\) −3274.18 −0.497900
\(352\) 0 0
\(353\) 8185.45i 1.23419i −0.786890 0.617093i \(-0.788310\pi\)
0.786890 0.617093i \(-0.211690\pi\)
\(354\) 0 0
\(355\) −2843.37 + 10208.0i −0.425099 + 1.52615i
\(356\) 0 0
\(357\) 689.301i 0.102190i
\(358\) 0 0
\(359\) 1464.76 0.215341 0.107670 0.994187i \(-0.465661\pi\)
0.107670 + 0.994187i \(0.465661\pi\)
\(360\) 0 0
\(361\) 9845.00 1.43534
\(362\) 0 0
\(363\) 2100.00i 0.303640i
\(364\) 0 0
\(365\) 4640.00 + 1292.44i 0.665394 + 0.185341i
\(366\) 0 0
\(367\) 516.000i 0.0733923i 0.999326 + 0.0366962i \(0.0116834\pi\)
−0.999326 + 0.0366962i \(0.988317\pi\)
\(368\) 0 0
\(369\) −1870.00 −0.263817
\(370\) 0 0
\(371\) −1981.74 −0.277323
\(372\) 0 0
\(373\) 8077.75i 1.12131i −0.828048 0.560657i \(-0.810549\pi\)
0.828048 0.560657i \(-0.189451\pi\)
\(374\) 0 0
\(375\) 3834.24 + 4068.00i 0.527998 + 0.560188i
\(376\) 0 0
\(377\) 3403.42i 0.464948i
\(378\) 0 0
\(379\) 2197.15 0.297783 0.148892 0.988854i \(-0.452429\pi\)
0.148892 + 0.988854i \(0.452429\pi\)
\(380\) 0 0
\(381\) −11152.0 −1.49957
\(382\) 0 0
\(383\) 5988.00i 0.798884i 0.916759 + 0.399442i \(0.130796\pi\)
−0.916759 + 0.399442i \(0.869204\pi\)
\(384\) 0 0
\(385\) 1856.00 + 516.976i 0.245690 + 0.0684351i
\(386\) 0 0
\(387\) 3476.00i 0.456576i
\(388\) 0 0
\(389\) −7974.00 −1.03933 −0.519663 0.854371i \(-0.673943\pi\)
−0.519663 + 0.854371i \(0.673943\pi\)
\(390\) 0 0
\(391\) 2240.23 0.289753
\(392\) 0 0
\(393\) 172.325i 0.0221187i
\(394\) 0 0
\(395\) −1033.95 + 3712.00i −0.131706 + 0.472838i
\(396\) 0 0
\(397\) 7991.58i 1.01029i −0.863034 0.505146i \(-0.831439\pi\)
0.863034 0.505146i \(-0.168561\pi\)
\(398\) 0 0
\(399\) 2067.90 0.259460
\(400\) 0 0
\(401\) 418.000 0.0520547 0.0260273 0.999661i \(-0.491714\pi\)
0.0260273 + 0.999661i \(0.491714\pi\)
\(402\) 0 0
\(403\) 3712.00i 0.458829i
\(404\) 0 0
\(405\) 933.000 3349.57i 0.114472 0.410967i
\(406\) 0 0
\(407\) 12064.0i 1.46926i
\(408\) 0 0
\(409\) 1414.00 0.170948 0.0854741 0.996340i \(-0.472760\pi\)
0.0854741 + 0.996340i \(0.472760\pi\)
\(410\) 0 0
\(411\) 1895.58 0.227499
\(412\) 0 0
\(413\) 2584.88i 0.307975i
\(414\) 0 0
\(415\) 10124.1 + 2820.00i 1.19753 + 0.333562i
\(416\) 0 0
\(417\) 8443.94i 0.991610i
\(418\) 0 0
\(419\) 3661.91 0.426960 0.213480 0.976947i \(-0.431520\pi\)
0.213480 + 0.976947i \(0.431520\pi\)
\(420\) 0 0
\(421\) 3290.00 0.380866 0.190433 0.981700i \(-0.439011\pi\)
0.190433 + 0.981700i \(0.439011\pi\)
\(422\) 0 0
\(423\) 2684.00i 0.308512i
\(424\) 0 0
\(425\) −2784.00 + 4609.70i −0.317750 + 0.526126i
\(426\) 0 0
\(427\) 328.000i 0.0371734i
\(428\) 0 0
\(429\) 3712.00 0.417755
\(430\) 0 0
\(431\) 1723.25 0.192590 0.0962949 0.995353i \(-0.469301\pi\)
0.0962949 + 0.995353i \(0.469301\pi\)
\(432\) 0 0
\(433\) 16414.0i 1.82172i 0.412713 + 0.910861i \(0.364581\pi\)
−0.412713 + 0.910861i \(0.635419\pi\)
\(434\) 0 0
\(435\) −6806.85 1896.00i −0.750261 0.208980i
\(436\) 0 0
\(437\) 6720.69i 0.735684i
\(438\) 0 0
\(439\) 3704.99 0.402801 0.201401 0.979509i \(-0.435451\pi\)
0.201401 + 0.979509i \(0.435451\pi\)
\(440\) 0 0
\(441\) 3597.00 0.388403
\(442\) 0 0
\(443\) 5484.00i 0.588155i −0.955782 0.294078i \(-0.904988\pi\)
0.955782 0.294078i \(-0.0950124\pi\)
\(444\) 0 0
\(445\) 18.0000 64.6220i 0.00191749 0.00688399i
\(446\) 0 0
\(447\) 10200.0i 1.07929i
\(448\) 0 0
\(449\) −3458.00 −0.363459 −0.181730 0.983349i \(-0.558170\pi\)
−0.181730 + 0.983349i \(0.558170\pi\)
\(450\) 0 0
\(451\) 7323.82 0.764668
\(452\) 0 0
\(453\) 8616.26i 0.893659i
\(454\) 0 0
\(455\) 258.488 928.000i 0.0266332 0.0956161i
\(456\) 0 0
\(457\) 10468.8i 1.07157i 0.844354 + 0.535786i \(0.179984\pi\)
−0.844354 + 0.535786i \(0.820016\pi\)
\(458\) 0 0
\(459\) 6548.36 0.665907
\(460\) 0 0
\(461\) 5806.00 0.586578 0.293289 0.956024i \(-0.405250\pi\)
0.293289 + 0.956024i \(0.405250\pi\)
\(462\) 0 0
\(463\) 5004.00i 0.502280i −0.967951 0.251140i \(-0.919195\pi\)
0.967951 0.251140i \(-0.0808054\pi\)
\(464\) 0 0
\(465\) 7424.00 + 2067.90i 0.740387 + 0.206230i
\(466\) 0 0
\(467\) 5148.00i 0.510109i −0.966927 0.255055i \(-0.917907\pi\)
0.966927 0.255055i \(-0.0820935\pi\)
\(468\) 0 0
\(469\) −2768.00 −0.272525
\(470\) 0 0
\(471\) 14216.8 1.39082
\(472\) 0 0
\(473\) 13613.7i 1.32338i
\(474\) 0 0
\(475\) 13829.1 + 8352.00i 1.33584 + 0.806771i
\(476\) 0 0
\(477\) 5449.79i 0.523121i
\(478\) 0 0
\(479\) −4480.46 −0.427385 −0.213692 0.976901i \(-0.568549\pi\)
−0.213692 + 0.976901i \(0.568549\pi\)
\(480\) 0 0
\(481\) −6032.00 −0.571799
\(482\) 0 0
\(483\) 832.000i 0.0783795i
\(484\) 0 0
\(485\) −11600.0 3231.10i −1.08604 0.302509i
\(486\) 0 0
\(487\) 3044.00i 0.283238i 0.989921 + 0.141619i \(0.0452308\pi\)
−0.989921 + 0.141619i \(0.954769\pi\)
\(488\) 0 0
\(489\) −912.000 −0.0843396
\(490\) 0 0
\(491\) −215.407 −0.0197987 −0.00989935 0.999951i \(-0.503151\pi\)
−0.00989935 + 0.999951i \(0.503151\pi\)
\(492\) 0 0
\(493\) 6806.85i 0.621836i
\(494\) 0 0
\(495\) 1421.68 5104.00i 0.129091 0.463450i
\(496\) 0 0
\(497\) 3791.16i 0.342166i
\(498\) 0 0
\(499\) 11416.5 1.02420 0.512099 0.858926i \(-0.328868\pi\)
0.512099 + 0.858926i \(0.328868\pi\)
\(500\) 0 0
\(501\) −1488.00 −0.132692
\(502\) 0 0
\(503\) 15348.0i 1.36050i 0.732978 + 0.680252i \(0.238130\pi\)
−0.732978 + 0.680252i \(0.761870\pi\)
\(504\) 0 0
\(505\) −3042.00 + 10921.1i −0.268054 + 0.962343i
\(506\) 0 0
\(507\) 6932.00i 0.607221i
\(508\) 0 0
\(509\) 17502.0 1.52409 0.762046 0.647523i \(-0.224195\pi\)
0.762046 + 0.647523i \(0.224195\pi\)
\(510\) 0 0
\(511\) 1723.25 0.149182
\(512\) 0 0
\(513\) 19645.1i 1.69074i
\(514\) 0 0
\(515\) 473.895 + 132.000i 0.0405481 + 0.0112944i
\(516\) 0 0
\(517\) 10511.8i 0.894217i
\(518\) 0 0
\(519\) 7668.47 0.648572
\(520\) 0 0
\(521\) 2874.00 0.241674 0.120837 0.992672i \(-0.461442\pi\)
0.120837 + 0.992672i \(0.461442\pi\)
\(522\) 0 0
\(523\) 14604.0i 1.22101i −0.792012 0.610505i \(-0.790966\pi\)
0.792012 0.610505i \(-0.209034\pi\)
\(524\) 0 0
\(525\) 1712.00 + 1033.95i 0.142320 + 0.0859530i
\(526\) 0 0
\(527\) 7424.00i 0.613652i
\(528\) 0 0
\(529\) 9463.00 0.777760
\(530\) 0 0
\(531\) 7108.42 0.580940
\(532\) 0 0
\(533\) 3661.91i 0.297589i
\(534\) 0 0
\(535\) −19515.8 5436.00i −1.57709 0.439287i
\(536\) 0 0
\(537\) 11201.1i 0.900121i
\(538\) 0 0
\(539\) −14087.6 −1.12578
\(540\) 0 0
\(541\) −19330.0 −1.53616 −0.768079 0.640355i \(-0.778787\pi\)
−0.768079 + 0.640355i \(0.778787\pi\)
\(542\) 0 0
\(543\) 6168.00i 0.487466i
\(544\) 0 0
\(545\) 6042.00 21691.4i 0.474882 1.70488i
\(546\) 0 0
\(547\) 708.000i 0.0553417i 0.999617 + 0.0276708i \(0.00880902\pi\)
−0.999617 + 0.0276708i \(0.991191\pi\)
\(548\) 0 0
\(549\) 902.000 0.0701210
\(550\) 0 0
\(551\) −20420.5 −1.57885
\(552\) 0 0
\(553\) 1378.60i 0.106011i
\(554\) 0 0
\(555\) 3360.34 12064.0i 0.257007 0.922682i
\(556\) 0 0
\(557\) 9284.02i 0.706242i 0.935578 + 0.353121i \(0.114880\pi\)
−0.935578 + 0.353121i \(0.885120\pi\)
\(558\) 0 0
\(559\) 6806.85 0.515025
\(560\) 0 0
\(561\) −7424.00 −0.558719
\(562\) 0 0
\(563\) 9220.00i 0.690189i 0.938568 + 0.345095i \(0.112153\pi\)
−0.938568 + 0.345095i \(0.887847\pi\)
\(564\) 0 0
\(565\) −17632.0 4911.27i −1.31289 0.365697i
\(566\) 0 0
\(567\) 1244.00i 0.0921395i
\(568\) 0 0
\(569\) −10458.0 −0.770513 −0.385257 0.922809i \(-0.625887\pi\)
−0.385257 + 0.922809i \(0.625887\pi\)
\(570\) 0 0
\(571\) −13312.1 −0.975648 −0.487824 0.872942i \(-0.662209\pi\)
−0.487824 + 0.872942i \(0.662209\pi\)
\(572\) 0 0
\(573\) 17921.8i 1.30662i
\(574\) 0 0
\(575\) 3360.34 5564.00i 0.243715 0.403539i
\(576\) 0 0
\(577\) 17491.0i 1.26198i −0.775792 0.630988i \(-0.782650\pi\)
0.775792 0.630988i \(-0.217350\pi\)
\(578\) 0 0
\(579\) −10167.2 −0.729765
\(580\) 0 0
\(581\) 3760.00 0.268487
\(582\) 0 0
\(583\) 21344.0i 1.51626i
\(584\) 0 0
\(585\) −2552.00 710.842i −0.180363 0.0502388i
\(586\) 0 0
\(587\) 11460.0i 0.805800i 0.915244 + 0.402900i \(0.131998\pi\)
−0.915244 + 0.402900i \(0.868002\pi\)
\(588\) 0 0
\(589\) 22272.0 1.55807
\(590\) 0 0
\(591\) −10942.7 −0.761626
\(592\) 0 0
\(593\) 2326.39i 0.161102i −0.996750 0.0805510i \(-0.974332\pi\)
0.996750 0.0805510i \(-0.0256680\pi\)
\(594\) 0 0
\(595\) −516.976 + 1856.00i −0.0356201 + 0.127880i
\(596\) 0 0
\(597\) 1033.95i 0.0708825i
\(598\) 0 0
\(599\) −24384.0 −1.66328 −0.831640 0.555316i \(-0.812597\pi\)
−0.831640 + 0.555316i \(0.812597\pi\)
\(600\) 0 0
\(601\) 24054.0 1.63258 0.816292 0.577639i \(-0.196026\pi\)
0.816292 + 0.577639i \(0.196026\pi\)
\(602\) 0 0
\(603\) 7612.00i 0.514071i
\(604\) 0 0
\(605\) −1575.00 + 5654.42i −0.105839 + 0.379975i
\(606\) 0 0
\(607\) 17364.0i 1.16109i 0.814227 + 0.580546i \(0.197161\pi\)
−0.814227 + 0.580546i \(0.802839\pi\)
\(608\) 0 0
\(609\) −2528.00 −0.168210
\(610\) 0 0
\(611\) −5255.92 −0.348006
\(612\) 0 0
\(613\) 2434.09i 0.160379i −0.996780 0.0801894i \(-0.974447\pi\)
0.996780 0.0801894i \(-0.0255525\pi\)
\(614\) 0 0
\(615\) 7323.82 + 2040.00i 0.480203 + 0.133757i
\(616\) 0 0
\(617\) 8616.26i 0.562201i −0.959678 0.281100i \(-0.909301\pi\)
0.959678 0.281100i \(-0.0906993\pi\)
\(618\) 0 0
\(619\) −9176.32 −0.595844 −0.297922 0.954590i \(-0.596294\pi\)
−0.297922 + 0.954590i \(0.596294\pi\)
\(620\) 0 0
\(621\) −7904.00 −0.510751
\(622\) 0 0
\(623\) 24.0000i 0.00154340i
\(624\) 0 0
\(625\) 7273.00 + 13829.1i 0.465472 + 0.885063i
\(626\) 0 0
\(627\) 22272.0i 1.41859i
\(628\) 0 0
\(629\) 12064.0 0.764743
\(630\) 0 0
\(631\) 9219.40 0.581646 0.290823 0.956777i \(-0.406071\pi\)
0.290823 + 0.956777i \(0.406071\pi\)
\(632\) 0 0
\(633\) 3618.83i 0.227228i
\(634\) 0 0
\(635\) −30027.7 8364.00i −1.87655 0.522701i
\(636\) 0 0
\(637\) 7043.80i 0.438125i
\(638\) 0 0
\(639\) 10425.7 0.645436
\(640\) 0 0
\(641\) −25538.0 −1.57362 −0.786810 0.617195i \(-0.788269\pi\)
−0.786810 + 0.617195i \(0.788269\pi\)
\(642\) 0 0
\(643\) 22060.0i 1.35297i −0.736455 0.676486i \(-0.763502\pi\)
0.736455 0.676486i \(-0.236498\pi\)
\(644\) 0 0
\(645\) −3792.00 + 13613.7i −0.231488 + 0.831068i
\(646\) 0 0
\(647\) 29444.0i 1.78912i 0.446944 + 0.894562i \(0.352512\pi\)
−0.446944 + 0.894562i \(0.647488\pi\)
\(648\) 0 0
\(649\) −27840.0 −1.68385
\(650\) 0 0
\(651\) 2757.20 0.165996
\(652\) 0 0
\(653\) 20786.7i 1.24571i 0.782338 + 0.622854i \(0.214027\pi\)
−0.782338 + 0.622854i \(0.785973\pi\)
\(654\) 0 0
\(655\) −129.244 + 464.000i −0.00770989 + 0.0276794i
\(656\) 0 0
\(657\) 4738.95i 0.281406i
\(658\) 0 0
\(659\) −13742.9 −0.812366 −0.406183 0.913792i \(-0.633140\pi\)
−0.406183 + 0.913792i \(0.633140\pi\)
\(660\) 0 0
\(661\) 11530.0 0.678464 0.339232 0.940703i \(-0.389833\pi\)
0.339232 + 0.940703i \(0.389833\pi\)
\(662\) 0 0
\(663\) 3712.00i 0.217439i
\(664\) 0 0
\(665\) 5568.00 + 1550.93i 0.324688 + 0.0904397i
\(666\) 0 0
\(667\) 8216.00i 0.476949i
\(668\) 0 0
\(669\) 17136.0 0.990308
\(670\) 0 0
\(671\) −3532.67 −0.203245
\(672\) 0 0
\(673\) 23910.1i 1.36949i −0.728782 0.684746i \(-0.759913\pi\)
0.728782 0.684746i \(-0.240087\pi\)
\(674\) 0 0
\(675\) 9822.54 16264.0i 0.560103 0.927410i
\(676\) 0 0
\(677\) 2175.61i 0.123509i −0.998091 0.0617543i \(-0.980330\pi\)
0.998091 0.0617543i \(-0.0196695\pi\)
\(678\) 0 0
\(679\) −4308.13 −0.243492
\(680\) 0 0
\(681\) 19824.0 1.11550
\(682\) 0 0
\(683\) 20708.0i 1.16013i 0.814570 + 0.580066i \(0.196973\pi\)
−0.814570 + 0.580066i \(0.803027\pi\)
\(684\) 0 0
\(685\) 5104.00 + 1421.68i 0.284692 + 0.0792989i
\(686\) 0 0
\(687\) 7080.00i 0.393186i
\(688\) 0 0
\(689\) −10672.0 −0.590088
\(690\) 0 0
\(691\) −4609.70 −0.253779 −0.126890 0.991917i \(-0.540499\pi\)
−0.126890 + 0.991917i \(0.540499\pi\)
\(692\) 0 0
\(693\) 1895.58i 0.103906i
\(694\) 0 0
\(695\) 6332.95 22736.0i 0.345644 1.24090i
\(696\) 0 0
\(697\) 7323.82i 0.398005i
\(698\) 0 0
\(699\) 21713.0 1.17491
\(700\) 0 0
\(701\) −8942.00 −0.481790 −0.240895 0.970551i \(-0.577441\pi\)
−0.240895 + 0.970551i \(0.577441\pi\)
\(702\) 0 0
\(703\) 36192.0i 1.94169i
\(704\) 0 0
\(705\) 2928.00 10511.8i 0.156418 0.561559i
\(706\) 0 0
\(707\) 4056.00i 0.215759i
\(708\) 0 0
\(709\) 3670.00 0.194400 0.0972001 0.995265i \(-0.469011\pi\)
0.0972001 + 0.995265i \(0.469011\pi\)
\(710\) 0 0
\(711\) 3791.16 0.199971
\(712\) 0 0
\(713\) 8960.91i 0.470672i
\(714\) 0 0
\(715\) 9994.87 + 2784.00i 0.522779 + 0.145616i
\(716\) 0 0
\(717\) 22057.6i 1.14889i
\(718\) 0 0
\(719\) −8616.26 −0.446916 −0.223458 0.974714i \(-0.571735\pi\)
−0.223458 + 0.974714i \(0.571735\pi\)
\(720\) 0 0
\(721\) 176.000 0.00909096
\(722\) 0 0
\(723\) 6472.00i 0.332913i
\(724\) 0 0
\(725\) −16906.0 10210.3i −0.866032 0.523034i
\(726\) 0 0
\(727\) 32004.0i 1.63269i 0.577567 + 0.816343i \(0.304002\pi\)
−0.577567 + 0.816343i \(0.695998\pi\)
\(728\) 0 0
\(729\) −19837.0 −1.00782
\(730\) 0 0
\(731\) −13613.7 −0.688811
\(732\) 0 0
\(733\) 5363.62i 0.270273i −0.990827 0.135136i \(-0.956853\pi\)
0.990827 0.135136i \(-0.0431473\pi\)
\(734\) 0 0
\(735\) −14087.6 3924.00i −0.706978 0.196924i
\(736\) 0 0
\(737\) 29812.3i 1.49003i
\(738\) 0 0
\(739\) 25374.9 1.26310 0.631550 0.775335i \(-0.282419\pi\)
0.631550 + 0.775335i \(0.282419\pi\)
\(740\) 0 0
\(741\) 11136.0 0.552080
\(742\) 0 0
\(743\) 17404.0i 0.859342i −0.902986 0.429671i \(-0.858630\pi\)
0.902986 0.429671i \(-0.141370\pi\)
\(744\) 0 0
\(745\) 7650.00 27464.3i 0.376207 1.35062i
\(746\) 0 0
\(747\) 10340.0i 0.506454i
\(748\) 0 0
\(749\) −7248.00 −0.353586
\(750\) 0 0
\(751\) 32569.5 1.58253 0.791263 0.611476i \(-0.209424\pi\)
0.791263 + 0.611476i \(0.209424\pi\)
\(752\) 0 0
\(753\) 19817.4i 0.959079i
\(754\) 0 0
\(755\) 6462.20 23200.0i 0.311501 1.11832i
\(756\) 0 0
\(757\) 6139.09i 0.294754i 0.989080 + 0.147377i \(0.0470831\pi\)
−0.989080 + 0.147377i \(0.952917\pi\)
\(758\) 0 0
\(759\) 8960.91 0.428538
\(760\) 0 0
\(761\) 27850.0 1.32663 0.663313 0.748342i \(-0.269150\pi\)
0.663313 + 0.748342i \(0.269150\pi\)
\(762\) 0 0
\(763\) 8056.00i 0.382237i
\(764\) 0 0
\(765\) 5104.00 + 1421.68i 0.241223 + 0.0671909i
\(766\) 0 0
\(767\) 13920.0i 0.655309i
\(768\) 0 0
\(769\) −33550.0 −1.57327 −0.786635 0.617419i \(-0.788178\pi\)
−0.786635 + 0.617419i \(0.788178\pi\)
\(770\) 0 0
\(771\) 18611.1 0.869343
\(772\) 0 0
\(773\) 1658.63i 0.0771757i −0.999255 0.0385878i \(-0.987714\pi\)
0.999255 0.0385878i \(-0.0122859\pi\)
\(774\) 0 0
\(775\) 18438.8 + 11136.0i 0.854634 + 0.516151i
\(776\) 0 0
\(777\) 4480.46i 0.206867i
\(778\) 0 0
\(779\) 21971.5 1.01054
\(780\) 0 0
\(781\) −40832.0 −1.87079
\(782\) 0 0
\(783\) 24016.0i 1.09612i
\(784\) 0 0
\(785\) 38280.0 + 10662.6i 1.74047 + 0.484797i
\(786\) 0 0
\(787\) 27028.0i 1.22420i 0.790781 + 0.612099i \(0.209675\pi\)
−0.790781 + 0.612099i \(0.790325\pi\)
\(788\) 0 0
\(789\) 2416.00 0.109014
\(790\) 0 0
\(791\) −6548.36 −0.294353
\(792\) 0 0
\(793\) 1766.33i 0.0790976i
\(794\) 0