Newspace parameters
| Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 160.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(9.44030560092\) |
| Analytic rank: | \(0\) |
| Dimension: | \(2\) |
| Coefficient field: | \(\Q(i)\) |
|
|
|
| Defining polynomial: |
\( x^{2} + 1 \)
|
| Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
| Coefficient ring index: | \( 2 \) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
| Embedding label | 129.2 | ||
| Root | \(1.00000i\) of defining polynomial | ||
| Character | \(\chi\) | \(=\) | 160.129 |
| Dual form | 160.4.c.a.129.1 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).
| \(n\) | \(31\) | \(97\) | \(101\) |
| \(\chi(n)\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
| \(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| \(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
| \(2\) | 0 | 0 | ||||||||
| \(3\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(4\) | 0 | 0 | ||||||||
| \(5\) | −11.0000 | + | 2.00000i | −0.983870 | + | 0.178885i | ||||
| \(6\) | 0 | 0 | ||||||||
| \(7\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(8\) | 0 | 0 | ||||||||
| \(9\) | 27.0000 | 1.00000 | ||||||||
| \(10\) | 0 | 0 | ||||||||
| \(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(12\) | 0 | 0 | ||||||||
| \(13\) | − | 92.0000i | − | 1.96279i | −0.192012 | − | 0.981393i | \(-0.561501\pi\) | ||
| 0.192012 | − | 0.981393i | \(-0.438499\pi\) | |||||||
| \(14\) | 0 | 0 | ||||||||
| \(15\) | 0 | 0 | ||||||||
| \(16\) | 0 | 0 | ||||||||
| \(17\) | − | 104.000i | − | 1.48375i | −0.670540 | − | 0.741874i | \(-0.733937\pi\) | ||
| 0.670540 | − | 0.741874i | \(-0.266063\pi\) | |||||||
| \(18\) | 0 | 0 | ||||||||
| \(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(20\) | 0 | 0 | ||||||||
| \(21\) | 0 | 0 | ||||||||
| \(22\) | 0 | 0 | ||||||||
| \(23\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(24\) | 0 | 0 | ||||||||
| \(25\) | 117.000 | − | 44.0000i | 0.936000 | − | 0.352000i | ||||
| \(26\) | 0 | 0 | ||||||||
| \(27\) | 0 | 0 | ||||||||
| \(28\) | 0 | 0 | ||||||||
| \(29\) | −130.000 | −0.832427 | −0.416214 | − | 0.909267i | \(-0.636643\pi\) | ||||
| −0.416214 | + | 0.909267i | \(0.636643\pi\) | |||||||
| \(30\) | 0 | 0 | ||||||||
| \(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(32\) | 0 | 0 | ||||||||
| \(33\) | 0 | 0 | ||||||||
| \(34\) | 0 | 0 | ||||||||
| \(35\) | 0 | 0 | ||||||||
| \(36\) | 0 | 0 | ||||||||
| \(37\) | − | 396.000i | − | 1.75951i | −0.475424 | − | 0.879757i | \(-0.657705\pi\) | ||
| 0.475424 | − | 0.879757i | \(-0.342295\pi\) | |||||||
| \(38\) | 0 | 0 | ||||||||
| \(39\) | 0 | 0 | ||||||||
| \(40\) | 0 | 0 | ||||||||
| \(41\) | 230.000 | 0.876097 | 0.438048 | − | 0.898951i | \(-0.355670\pi\) | ||||
| 0.438048 | + | 0.898951i | \(0.355670\pi\) | |||||||
| \(42\) | 0 | 0 | ||||||||
| \(43\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(44\) | 0 | 0 | ||||||||
| \(45\) | −297.000 | + | 54.0000i | −0.983870 | + | 0.178885i | ||||
| \(46\) | 0 | 0 | ||||||||
| \(47\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(48\) | 0 | 0 | ||||||||
| \(49\) | 343.000 | 1.00000 | ||||||||
| \(50\) | 0 | 0 | ||||||||
| \(51\) | 0 | 0 | ||||||||
| \(52\) | 0 | 0 | ||||||||
| \(53\) | 572.000i | 1.48246i | 0.671253 | + | 0.741229i | \(0.265757\pi\) | ||||
| −0.671253 | + | 0.741229i | \(0.734243\pi\) | |||||||
| \(54\) | 0 | 0 | ||||||||
| \(55\) | 0 | 0 | ||||||||
| \(56\) | 0 | 0 | ||||||||
| \(57\) | 0 | 0 | ||||||||
| \(58\) | 0 | 0 | ||||||||
| \(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(60\) | 0 | 0 | ||||||||
| \(61\) | −830.000 | −1.74214 | −0.871071 | − | 0.491158i | \(-0.836574\pi\) | ||||
| −0.871071 | + | 0.491158i | \(0.836574\pi\) | |||||||
| \(62\) | 0 | 0 | ||||||||
| \(63\) | 0 | 0 | ||||||||
| \(64\) | 0 | 0 | ||||||||
| \(65\) | 184.000 | + | 1012.00i | 0.351114 | + | 1.93113i | ||||
| \(66\) | 0 | 0 | ||||||||
| \(67\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(68\) | 0 | 0 | ||||||||
| \(69\) | 0 | 0 | ||||||||
| \(70\) | 0 | 0 | ||||||||
| \(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(72\) | 0 | 0 | ||||||||
| \(73\) | 592.000i | 0.949156i | 0.880214 | + | 0.474578i | \(0.157399\pi\) | ||||
| −0.880214 | + | 0.474578i | \(0.842601\pi\) | |||||||
| \(74\) | 0 | 0 | ||||||||
| \(75\) | 0 | 0 | ||||||||
| \(76\) | 0 | 0 | ||||||||
| \(77\) | 0 | 0 | ||||||||
| \(78\) | 0 | 0 | ||||||||
| \(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(80\) | 0 | 0 | ||||||||
| \(81\) | 729.000 | 1.00000 | ||||||||
| \(82\) | 0 | 0 | ||||||||
| \(83\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(84\) | 0 | 0 | ||||||||
| \(85\) | 208.000 | + | 1144.00i | 0.265421 | + | 1.45981i | ||||
| \(86\) | 0 | 0 | ||||||||
| \(87\) | 0 | 0 | ||||||||
| \(88\) | 0 | 0 | ||||||||
| \(89\) | −1670.00 | −1.98898 | −0.994492 | − | 0.104809i | \(-0.966577\pi\) | ||||
| −0.994492 | + | 0.104809i | \(0.966577\pi\) | |||||||
| \(90\) | 0 | 0 | ||||||||
| \(91\) | 0 | 0 | ||||||||
| \(92\) | 0 | 0 | ||||||||
| \(93\) | 0 | 0 | ||||||||
| \(94\) | 0 | 0 | ||||||||
| \(95\) | 0 | 0 | ||||||||
| \(96\) | 0 | 0 | ||||||||
| \(97\) | − | 1816.00i | − | 1.90090i | −0.310884 | − | 0.950448i | \(-0.600625\pi\) | ||
| 0.310884 | − | 0.950448i | \(-0.399375\pi\) | |||||||
| \(98\) | 0 | 0 | ||||||||
| \(99\) | 0 | 0 | ||||||||
| \(100\) | 0 | 0 | ||||||||
| \(101\) | 598.000 | 0.589141 | 0.294570 | − | 0.955630i | \(-0.404823\pi\) | ||||
| 0.294570 | + | 0.955630i | \(0.404823\pi\) | |||||||
| \(102\) | 0 | 0 | ||||||||
| \(103\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(104\) | 0 | 0 | ||||||||
| \(105\) | 0 | 0 | ||||||||
| \(106\) | 0 | 0 | ||||||||
| \(107\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(108\) | 0 | 0 | ||||||||
| \(109\) | 1746.00 | 1.53428 | 0.767140 | − | 0.641480i | \(-0.221679\pi\) | ||||
| 0.767140 | + | 0.641480i | \(0.221679\pi\) | |||||||
| \(110\) | 0 | 0 | ||||||||
| \(111\) | 0 | 0 | ||||||||
| \(112\) | 0 | 0 | ||||||||
| \(113\) | 1328.00i | 1.10556i | 0.833329 | + | 0.552778i | \(0.186432\pi\) | ||||
| −0.833329 | + | 0.552778i | \(0.813568\pi\) | |||||||
| \(114\) | 0 | 0 | ||||||||
| \(115\) | 0 | 0 | ||||||||
| \(116\) | 0 | 0 | ||||||||
| \(117\) | − | 2484.00i | − | 1.96279i | ||||||
| \(118\) | 0 | 0 | ||||||||
| \(119\) | 0 | 0 | ||||||||
| \(120\) | 0 | 0 | ||||||||
| \(121\) | −1331.00 | −1.00000 | ||||||||
| \(122\) | 0 | 0 | ||||||||
| \(123\) | 0 | 0 | ||||||||
| \(124\) | 0 | 0 | ||||||||
| \(125\) | −1199.00 | + | 718.000i | −0.857935 | + | 0.513759i | ||||
| \(126\) | 0 | 0 | ||||||||
| \(127\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(128\) | 0 | 0 | ||||||||
| \(129\) | 0 | 0 | ||||||||
| \(130\) | 0 | 0 | ||||||||
| \(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(132\) | 0 | 0 | ||||||||
| \(133\) | 0 | 0 | ||||||||
| \(134\) | 0 | 0 | ||||||||
| \(135\) | 0 | 0 | ||||||||
| \(136\) | 0 | 0 | ||||||||
| \(137\) | − | 2776.00i | − | 1.73117i | −0.500766 | − | 0.865583i | \(-0.666948\pi\) | ||
| 0.500766 | − | 0.865583i | \(-0.333052\pi\) | |||||||
| \(138\) | 0 | 0 | ||||||||
| \(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(140\) | 0 | 0 | ||||||||
| \(141\) | 0 | 0 | ||||||||
| \(142\) | 0 | 0 | ||||||||
| \(143\) | 0 | 0 | ||||||||
| \(144\) | 0 | 0 | ||||||||
| \(145\) | 1430.00 | − | 260.000i | 0.819000 | − | 0.148909i | ||||
| \(146\) | 0 | 0 | ||||||||
| \(147\) | 0 | 0 | ||||||||
| \(148\) | 0 | 0 | ||||||||
| \(149\) | 3514.00 | 1.93207 | 0.966034 | − | 0.258415i | \(-0.0832003\pi\) | ||||
| 0.966034 | + | 0.258415i | \(0.0832003\pi\) | |||||||
| \(150\) | 0 | 0 | ||||||||
| \(151\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(152\) | 0 | 0 | ||||||||
| \(153\) | − | 2808.00i | − | 1.48375i | ||||||
| \(154\) | 0 | 0 | ||||||||
| \(155\) | 0 | 0 | ||||||||
| \(156\) | 0 | 0 | ||||||||
| \(157\) | − | 3924.00i | − | 1.99471i | −0.0726920 | − | 0.997354i | \(-0.523159\pi\) | ||
| 0.0726920 | − | 0.997354i | \(-0.476841\pi\) | |||||||
| \(158\) | 0 | 0 | ||||||||
| \(159\) | 0 | 0 | ||||||||
| \(160\) | 0 | 0 | ||||||||
| \(161\) | 0 | 0 | ||||||||
| \(162\) | 0 | 0 | ||||||||
| \(163\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(164\) | 0 | 0 | ||||||||
| \(165\) | 0 | 0 | ||||||||
| \(166\) | 0 | 0 | ||||||||
| \(167\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(168\) | 0 | 0 | ||||||||
| \(169\) | −6267.00 | −2.85253 | ||||||||
| \(170\) | 0 | 0 | ||||||||
| \(171\) | 0 | 0 | ||||||||
| \(172\) | 0 | 0 | ||||||||
| \(173\) | 2012.00i | 0.884217i | 0.896962 | + | 0.442108i | \(0.145769\pi\) | ||||
| −0.896962 | + | 0.442108i | \(0.854231\pi\) | |||||||
| \(174\) | 0 | 0 | ||||||||
| \(175\) | 0 | 0 | ||||||||
| \(176\) | 0 | 0 | ||||||||
| \(177\) | 0 | 0 | ||||||||
| \(178\) | 0 | 0 | ||||||||
| \(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(180\) | 0 | 0 | ||||||||
| \(181\) | 3942.00 | 1.61882 | 0.809410 | − | 0.587243i | \(-0.199787\pi\) | ||||
| 0.809410 | + | 0.587243i | \(0.199787\pi\) | |||||||
| \(182\) | 0 | 0 | ||||||||
| \(183\) | 0 | 0 | ||||||||
| \(184\) | 0 | 0 | ||||||||
| \(185\) | 792.000 | + | 4356.00i | 0.314751 | + | 1.73113i | ||||
| \(186\) | 0 | 0 | ||||||||
| \(187\) | 0 | 0 | ||||||||
| \(188\) | 0 | 0 | ||||||||
| \(189\) | 0 | 0 | ||||||||
| \(190\) | 0 | 0 | ||||||||
| \(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(192\) | 0 | 0 | ||||||||
| \(193\) | − | 72.0000i | − | 0.0268532i | −0.999910 | − | 0.0134266i | \(-0.995726\pi\) | ||
| 0.999910 | − | 0.0134266i | \(-0.00427395\pi\) | |||||||
| \(194\) | 0 | 0 | ||||||||
| \(195\) | 0 | 0 | ||||||||
| \(196\) | 0 | 0 | ||||||||
| \(197\) | 5404.00i | 1.95441i | 0.212295 | + | 0.977206i | \(0.431906\pi\) | ||||
| −0.212295 | + | 0.977206i | \(0.568094\pi\) | |||||||
| \(198\) | 0 | 0 | ||||||||
| \(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(200\) | 0 | 0 | ||||||||
| \(201\) | 0 | 0 | ||||||||
| \(202\) | 0 | 0 | ||||||||
| \(203\) | 0 | 0 | ||||||||
| \(204\) | 0 | 0 | ||||||||
| \(205\) | −2530.00 | + | 460.000i | −0.861965 | + | 0.156721i | ||||
| \(206\) | 0 | 0 | ||||||||
| \(207\) | 0 | 0 | ||||||||
| \(208\) | 0 | 0 | ||||||||
| \(209\) | 0 | 0 | ||||||||
| \(210\) | 0 | 0 | ||||||||
| \(211\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(212\) | 0 | 0 | ||||||||
| \(213\) | 0 | 0 | ||||||||
| \(214\) | 0 | 0 | ||||||||
| \(215\) | 0 | 0 | ||||||||
| \(216\) | 0 | 0 | ||||||||
| \(217\) | 0 | 0 | ||||||||
| \(218\) | 0 | 0 | ||||||||
| \(219\) | 0 | 0 | ||||||||
| \(220\) | 0 | 0 | ||||||||
| \(221\) | −9568.00 | −2.91228 | ||||||||
| \(222\) | 0 | 0 | ||||||||
| \(223\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(224\) | 0 | 0 | ||||||||
| \(225\) | 3159.00 | − | 1188.00i | 0.936000 | − | 0.352000i | ||||
| \(226\) | 0 | 0 | ||||||||
| \(227\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(228\) | 0 | 0 | ||||||||
| \(229\) | 6390.00 | 1.84394 | 0.921972 | − | 0.387257i | \(-0.126577\pi\) | ||||
| 0.921972 | + | 0.387257i | \(0.126577\pi\) | |||||||
| \(230\) | 0 | 0 | ||||||||
| \(231\) | 0 | 0 | ||||||||
| \(232\) | 0 | 0 | ||||||||
| \(233\) | 7088.00i | 1.99292i | 0.0840693 | + | 0.996460i | \(0.473208\pi\) | ||||
| −0.0840693 | + | 0.996460i | \(0.526792\pi\) | |||||||
| \(234\) | 0 | 0 | ||||||||
| \(235\) | 0 | 0 | ||||||||
| \(236\) | 0 | 0 | ||||||||
| \(237\) | 0 | 0 | ||||||||
| \(238\) | 0 | 0 | ||||||||
| \(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(240\) | 0 | 0 | ||||||||
| \(241\) | 5310.00 | 1.41928 | 0.709641 | − | 0.704563i | \(-0.248857\pi\) | ||||
| 0.709641 | + | 0.704563i | \(0.248857\pi\) | |||||||
| \(242\) | 0 | 0 | ||||||||
| \(243\) | 0 | 0 | ||||||||
| \(244\) | 0 | 0 | ||||||||
| \(245\) | −3773.00 | + | 686.000i | −0.983870 | + | 0.178885i | ||||
| \(246\) | 0 | 0 | ||||||||
| \(247\) | 0 | 0 | ||||||||
| \(248\) | 0 | 0 | ||||||||
| \(249\) | 0 | 0 | ||||||||
| \(250\) | 0 | 0 | ||||||||
| \(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(252\) | 0 | 0 | ||||||||
| \(253\) | 0 | 0 | ||||||||
| \(254\) | 0 | 0 | ||||||||
| \(255\) | 0 | 0 | ||||||||
| \(256\) | 0 | 0 | ||||||||
| \(257\) | 8096.00i | 1.96504i | 0.186164 | + | 0.982519i | \(0.440394\pi\) | ||||
| −0.186164 | + | 0.982519i | \(0.559606\pi\) | |||||||
| \(258\) | 0 | 0 | ||||||||
| \(259\) | 0 | 0 | ||||||||
| \(260\) | 0 | 0 | ||||||||
| \(261\) | −3510.00 | −0.832427 | ||||||||
| \(262\) | 0 | 0 | ||||||||
| \(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(264\) | 0 | 0 | ||||||||
| \(265\) | −1144.00 | − | 6292.00i | −0.265190 | − | 1.45855i | ||||
| \(266\) | 0 | 0 | ||||||||
| \(267\) | 0 | 0 | ||||||||
| \(268\) | 0 | 0 | ||||||||
| \(269\) | −3406.00 | −0.771998 | −0.385999 | − | 0.922499i | \(-0.626143\pi\) | ||||
| −0.385999 | + | 0.922499i | \(0.626143\pi\) | |||||||
| \(270\) | 0 | 0 | ||||||||
| \(271\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(272\) | 0 | 0 | ||||||||
| \(273\) | 0 | 0 | ||||||||
| \(274\) | 0 | 0 | ||||||||
| \(275\) | 0 | 0 | ||||||||
| \(276\) | 0 | 0 | ||||||||
| \(277\) | 1316.00i | 0.285454i | 0.989762 | + | 0.142727i | \(0.0455871\pi\) | ||||
| −0.989762 | + | 0.142727i | \(0.954413\pi\) | |||||||
| \(278\) | 0 | 0 | ||||||||
| \(279\) | 0 | 0 | ||||||||
| \(280\) | 0 | 0 | ||||||||
| \(281\) | 7430.00 | 1.57735 | 0.788677 | − | 0.614807i | \(-0.210766\pi\) | ||||
| 0.788677 | + | 0.614807i | \(0.210766\pi\) | |||||||
| \(282\) | 0 | 0 | ||||||||
| \(283\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(284\) | 0 | 0 | ||||||||
| \(285\) | 0 | 0 | ||||||||
| \(286\) | 0 | 0 | ||||||||
| \(287\) | 0 | 0 | ||||||||
| \(288\) | 0 | 0 | ||||||||
| \(289\) | −5903.00 | −1.20151 | ||||||||
| \(290\) | 0 | 0 | ||||||||
| \(291\) | 0 | 0 | ||||||||
| \(292\) | 0 | 0 | ||||||||
| \(293\) | − | 3452.00i | − | 0.688287i | −0.938917 | − | 0.344143i | \(-0.888169\pi\) | ||
| 0.938917 | − | 0.344143i | \(-0.111831\pi\) | |||||||
| \(294\) | 0 | 0 | ||||||||
| \(295\) | 0 | 0 | ||||||||
| \(296\) | 0 | 0 | ||||||||
| \(297\) | 0 | 0 | ||||||||
| \(298\) | 0 | 0 | ||||||||
| \(299\) | 0 | 0 | ||||||||
| \(300\) | 0 | 0 | ||||||||
| \(301\) | 0 | 0 | ||||||||
| \(302\) | 0 | 0 | ||||||||
| \(303\) | 0 | 0 | ||||||||
| \(304\) | 0 | 0 | ||||||||
| \(305\) | 9130.00 | − | 1660.00i | 1.71404 | − | 0.311644i | ||||
| \(306\) | 0 | 0 | ||||||||
| \(307\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(308\) | 0 | 0 | ||||||||
| \(309\) | 0 | 0 | ||||||||
| \(310\) | 0 | 0 | ||||||||
| \(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(312\) | 0 | 0 | ||||||||
| \(313\) | − | 8712.00i | − | 1.57326i | −0.617423 | − | 0.786632i | \(-0.711823\pi\) | ||
| 0.617423 | − | 0.786632i | \(-0.288177\pi\) | |||||||
| \(314\) | 0 | 0 | ||||||||
| \(315\) | 0 | 0 | ||||||||
| \(316\) | 0 | 0 | ||||||||
| \(317\) | 4676.00i | 0.828487i | 0.910166 | + | 0.414243i | \(0.135954\pi\) | ||||
| −0.910166 | + | 0.414243i | \(0.864046\pi\) | |||||||
| \(318\) | 0 | 0 | ||||||||
| \(319\) | 0 | 0 | ||||||||
| \(320\) | 0 | 0 | ||||||||
| \(321\) | 0 | 0 | ||||||||
| \(322\) | 0 | 0 | ||||||||
| \(323\) | 0 | 0 | ||||||||
| \(324\) | 0 | 0 | ||||||||
| \(325\) | −4048.00 | − | 10764.0i | −0.690900 | − | 1.83717i | ||||
| \(326\) | 0 | 0 | ||||||||
| \(327\) | 0 | 0 | ||||||||
| \(328\) | 0 | 0 | ||||||||
| \(329\) | 0 | 0 | ||||||||
| \(330\) | 0 | 0 | ||||||||
| \(331\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(332\) | 0 | 0 | ||||||||
| \(333\) | − | 10692.0i | − | 1.75951i | ||||||
| \(334\) | 0 | 0 | ||||||||
| \(335\) | 0 | 0 | ||||||||
| \(336\) | 0 | 0 | ||||||||
| \(337\) | − | 416.000i | − | 0.0672432i | −0.999435 | − | 0.0336216i | \(-0.989296\pi\) | ||
| 0.999435 | − | 0.0336216i | \(-0.0107041\pi\) | |||||||
| \(338\) | 0 | 0 | ||||||||
| \(339\) | 0 | 0 | ||||||||
| \(340\) | 0 | 0 | ||||||||
| \(341\) | 0 | 0 | ||||||||
| \(342\) | 0 | 0 | ||||||||
| \(343\) | 0 | 0 | ||||||||
| \(344\) | 0 | 0 | ||||||||
| \(345\) | 0 | 0 | ||||||||
| \(346\) | 0 | 0 | ||||||||
| \(347\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(348\) | 0 | 0 | ||||||||
| \(349\) | 9470.00 | 1.45249 | 0.726243 | − | 0.687438i | \(-0.241265\pi\) | ||||
| 0.726243 | + | 0.687438i | \(0.241265\pi\) | |||||||
| \(350\) | 0 | 0 | ||||||||
| \(351\) | 0 | 0 | ||||||||
| \(352\) | 0 | 0 | ||||||||
| \(353\) | − | 12848.0i | − | 1.93720i | −0.248633 | − | 0.968598i | \(-0.579981\pi\) | ||
| 0.248633 | − | 0.968598i | \(-0.420019\pi\) | |||||||
| \(354\) | 0 | 0 | ||||||||
| \(355\) | 0 | 0 | ||||||||
| \(356\) | 0 | 0 | ||||||||
| \(357\) | 0 | 0 | ||||||||
| \(358\) | 0 | 0 | ||||||||
| \(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(360\) | 0 | 0 | ||||||||
| \(361\) | −6859.00 | −1.00000 | ||||||||
| \(362\) | 0 | 0 | ||||||||
| \(363\) | 0 | 0 | ||||||||
| \(364\) | 0 | 0 | ||||||||
| \(365\) | −1184.00 | − | 6512.00i | −0.169790 | − | 0.933846i | ||||
| \(366\) | 0 | 0 | ||||||||
| \(367\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(368\) | 0 | 0 | ||||||||
| \(369\) | 6210.00 | 0.876097 | ||||||||
| \(370\) | 0 | 0 | ||||||||
| \(371\) | 0 | 0 | ||||||||
| \(372\) | 0 | 0 | ||||||||
| \(373\) | 6372.00i | 0.884530i | 0.896884 | + | 0.442265i | \(0.145825\pi\) | ||||
| −0.896884 | + | 0.442265i | \(0.854175\pi\) | |||||||
| \(374\) | 0 | 0 | ||||||||
| \(375\) | 0 | 0 | ||||||||
| \(376\) | 0 | 0 | ||||||||
| \(377\) | 11960.0i | 1.63388i | ||||||||
| \(378\) | 0 | 0 | ||||||||
| \(379\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(380\) | 0 | 0 | ||||||||
| \(381\) | 0 | 0 | ||||||||
| \(382\) | 0 | 0 | ||||||||
| \(383\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(384\) | 0 | 0 | ||||||||
| \(385\) | 0 | 0 | ||||||||
| \(386\) | 0 | 0 | ||||||||
| \(387\) | 0 | 0 | ||||||||
| \(388\) | 0 | 0 | ||||||||
| \(389\) | −374.000 | −0.0487469 | −0.0243735 | − | 0.999703i | \(-0.507759\pi\) | ||||
| −0.0243735 | + | 0.999703i | \(0.507759\pi\) | |||||||
| \(390\) | 0 | 0 | ||||||||
| \(391\) | 0 | 0 | ||||||||
| \(392\) | 0 | 0 | ||||||||
| \(393\) | 0 | 0 | ||||||||
| \(394\) | 0 | 0 | ||||||||
| \(395\) | 0 | 0 | ||||||||
| \(396\) | 0 | 0 | ||||||||
| \(397\) | 12564.0i | 1.58834i | 0.607699 | + | 0.794168i | \(0.292093\pi\) | ||||
| −0.607699 | + | 0.794168i | \(0.707907\pi\) | |||||||
| \(398\) | 0 | 0 | ||||||||
| \(399\) | 0 | 0 | ||||||||
| \(400\) | 0 | 0 | ||||||||
| \(401\) | −2398.00 | −0.298629 | −0.149315 | − | 0.988790i | \(-0.547707\pi\) | ||||
| −0.149315 | + | 0.988790i | \(0.547707\pi\) | |||||||
| \(402\) | 0 | 0 | ||||||||
| \(403\) | 0 | 0 | ||||||||
| \(404\) | 0 | 0 | ||||||||
| \(405\) | −8019.00 | + | 1458.00i | −0.983870 | + | 0.178885i | ||||
| \(406\) | 0 | 0 | ||||||||
| \(407\) | 0 | 0 | ||||||||
| \(408\) | 0 | 0 | ||||||||
| \(409\) | −7146.00 | −0.863929 | −0.431964 | − | 0.901891i | \(-0.642179\pi\) | ||||
| −0.431964 | + | 0.901891i | \(0.642179\pi\) | |||||||
| \(410\) | 0 | 0 | ||||||||
| \(411\) | 0 | 0 | ||||||||
| \(412\) | 0 | 0 | ||||||||
| \(413\) | 0 | 0 | ||||||||
| \(414\) | 0 | 0 | ||||||||
| \(415\) | 0 | 0 | ||||||||
| \(416\) | 0 | 0 | ||||||||
| \(417\) | 0 | 0 | ||||||||
| \(418\) | 0 | 0 | ||||||||
| \(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(420\) | 0 | 0 | ||||||||
| \(421\) | 10890.0 | 1.26068 | 0.630340 | − | 0.776319i | \(-0.282916\pi\) | ||||
| 0.630340 | + | 0.776319i | \(0.282916\pi\) | |||||||
| \(422\) | 0 | 0 | ||||||||
| \(423\) | 0 | 0 | ||||||||
| \(424\) | 0 | 0 | ||||||||
| \(425\) | −4576.00 | − | 12168.0i | −0.522279 | − | 1.38879i | ||||
| \(426\) | 0 | 0 | ||||||||
| \(427\) | 0 | 0 | ||||||||
| \(428\) | 0 | 0 | ||||||||
| \(429\) | 0 | 0 | ||||||||
| \(430\) | 0 | 0 | ||||||||
| \(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(432\) | 0 | 0 | ||||||||
| \(433\) | 17352.0i | 1.92583i | 0.269807 | + | 0.962914i | \(0.413040\pi\) | ||||
| −0.269807 | + | 0.962914i | \(0.586960\pi\) | |||||||
| \(434\) | 0 | 0 | ||||||||
| \(435\) | 0 | 0 | ||||||||
| \(436\) | 0 | 0 | ||||||||
| \(437\) | 0 | 0 | ||||||||
| \(438\) | 0 | 0 | ||||||||
| \(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(440\) | 0 | 0 | ||||||||
| \(441\) | 9261.00 | 1.00000 | ||||||||
| \(442\) | 0 | 0 | ||||||||
| \(443\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(444\) | 0 | 0 | ||||||||
| \(445\) | 18370.0 | − | 3340.00i | 1.95690 | − | 0.355800i | ||||
| \(446\) | 0 | 0 | ||||||||
| \(447\) | 0 | 0 | ||||||||
| \(448\) | 0 | 0 | ||||||||
| \(449\) | −16114.0 | −1.69369 | −0.846845 | − | 0.531840i | \(-0.821501\pi\) | ||||
| −0.846845 | + | 0.531840i | \(0.821501\pi\) | |||||||
| \(450\) | 0 | 0 | ||||||||
| \(451\) | 0 | 0 | ||||||||
| \(452\) | 0 | 0 | ||||||||
| \(453\) | 0 | 0 | ||||||||
| \(454\) | 0 | 0 | ||||||||
| \(455\) | 0 | 0 | ||||||||
| \(456\) | 0 | 0 | ||||||||
| \(457\) | 10456.0i | 1.07026i | 0.844768 | + | 0.535132i | \(0.179738\pi\) | ||||
| −0.844768 | + | 0.535132i | \(0.820262\pi\) | |||||||
| \(458\) | 0 | 0 | ||||||||
| \(459\) | 0 | 0 | ||||||||
| \(460\) | 0 | 0 | ||||||||
| \(461\) | 2318.00 | 0.234187 | 0.117093 | − | 0.993121i | \(-0.462642\pi\) | ||||
| 0.117093 | + | 0.993121i | \(0.462642\pi\) | |||||||
| \(462\) | 0 | 0 | ||||||||
| \(463\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(464\) | 0 | 0 | ||||||||
| \(465\) | 0 | 0 | ||||||||
| \(466\) | 0 | 0 | ||||||||
| \(467\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(468\) | 0 | 0 | ||||||||
| \(469\) | 0 | 0 | ||||||||
| \(470\) | 0 | 0 | ||||||||
| \(471\) | 0 | 0 | ||||||||
| \(472\) | 0 | 0 | ||||||||
| \(473\) | 0 | 0 | ||||||||
| \(474\) | 0 | 0 | ||||||||
| \(475\) | 0 | 0 | ||||||||
| \(476\) | 0 | 0 | ||||||||
| \(477\) | 15444.0i | 1.48246i | ||||||||
| \(478\) | 0 | 0 | ||||||||
| \(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(480\) | 0 | 0 | ||||||||
| \(481\) | −36432.0 | −3.45355 | ||||||||
| \(482\) | 0 | 0 | ||||||||
| \(483\) | 0 | 0 | ||||||||
| \(484\) | 0 | 0 | ||||||||
| \(485\) | 3632.00 | + | 19976.0i | 0.340043 | + | 1.87023i | ||||
| \(486\) | 0 | 0 | ||||||||
| \(487\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(488\) | 0 | 0 | ||||||||
| \(489\) | 0 | 0 | ||||||||
| \(490\) | 0 | 0 | ||||||||
| \(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(492\) | 0 | 0 | ||||||||
| \(493\) | 13520.0i | 1.23511i | ||||||||
| \(494\) | 0 | 0 | ||||||||
| \(495\) | 0 | 0 | ||||||||
| \(496\) | 0 | 0 | ||||||||
| \(497\) | 0 | 0 | ||||||||
| \(498\) | 0 | 0 | ||||||||
| \(499\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(500\) | 0 | 0 | ||||||||
| \(501\) | 0 | 0 | ||||||||
| \(502\) | 0 | 0 | ||||||||
| \(503\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(504\) | 0 | 0 | ||||||||
| \(505\) | −6578.00 | + | 1196.00i | −0.579638 | + | 0.105389i | ||||
| \(506\) | 0 | 0 | ||||||||
| \(507\) | 0 | 0 | ||||||||
| \(508\) | 0 | 0 | ||||||||
| \(509\) | 14270.0 | 1.24265 | 0.621323 | − | 0.783555i | \(-0.286596\pi\) | ||||
| 0.621323 | + | 0.783555i | \(0.286596\pi\) | |||||||
| \(510\) | 0 | 0 | ||||||||
| \(511\) | 0 | 0 | ||||||||
| \(512\) | 0 | 0 | ||||||||
| \(513\) | 0 | 0 | ||||||||
| \(514\) | 0 | 0 | ||||||||
| \(515\) | 0 | 0 | ||||||||
| \(516\) | 0 | 0 | ||||||||
| \(517\) | 0 | 0 | ||||||||
| \(518\) | 0 | 0 | ||||||||
| \(519\) | 0 | 0 | ||||||||
| \(520\) | 0 | 0 | ||||||||
| \(521\) | 23738.0 | 1.99612 | 0.998062 | − | 0.0622265i | \(-0.0198201\pi\) | ||||
| 0.998062 | + | 0.0622265i | \(0.0198201\pi\) | |||||||
| \(522\) | 0 | 0 | ||||||||
| \(523\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(524\) | 0 | 0 | ||||||||
| \(525\) | 0 | 0 | ||||||||
| \(526\) | 0 | 0 | ||||||||
| \(527\) | 0 | 0 | ||||||||
| \(528\) | 0 | 0 | ||||||||
| \(529\) | 12167.0 | 1.00000 | ||||||||
| \(530\) | 0 | 0 | ||||||||
| \(531\) | 0 | 0 | ||||||||
| \(532\) | 0 | 0 | ||||||||
| \(533\) | − | 21160.0i | − | 1.71959i | ||||||
| \(534\) | 0 | 0 | ||||||||
| \(535\) | 0 | 0 | ||||||||
| \(536\) | 0 | 0 | ||||||||
| \(537\) | 0 | 0 | ||||||||
| \(538\) | 0 | 0 | ||||||||
| \(539\) | 0 | 0 | ||||||||
| \(540\) | 0 | 0 | ||||||||
| \(541\) | −5922.00 | −0.470622 | −0.235311 | − | 0.971920i | \(-0.575611\pi\) | ||||
| −0.235311 | + | 0.971920i | \(0.575611\pi\) | |||||||
| \(542\) | 0 | 0 | ||||||||
| \(543\) | 0 | 0 | ||||||||
| \(544\) | 0 | 0 | ||||||||
| \(545\) | −19206.0 | + | 3492.00i | −1.50953 | + | 0.274460i | ||||
| \(546\) | 0 | 0 | ||||||||
| \(547\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(548\) | 0 | 0 | ||||||||
| \(549\) | −22410.0 | −1.74214 | ||||||||
| \(550\) | 0 | 0 | ||||||||
| \(551\) | 0 | 0 | ||||||||
| \(552\) | 0 | 0 | ||||||||
| \(553\) | 0 | 0 | ||||||||
| \(554\) | 0 | 0 | ||||||||
| \(555\) | 0 | 0 | ||||||||
| \(556\) | 0 | 0 | ||||||||
| \(557\) | − | 24836.0i | − | 1.88929i | −0.328093 | − | 0.944646i | \(-0.606406\pi\) | ||
| 0.328093 | − | 0.944646i | \(-0.393594\pi\) | |||||||
| \(558\) | 0 | 0 | ||||||||
| \(559\) | 0 | 0 | ||||||||
| \(560\) | 0 | 0 | ||||||||
| \(561\) | 0 | 0 | ||||||||
| \(562\) | 0 | 0 | ||||||||
| \(563\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(564\) | 0 | 0 | ||||||||
| \(565\) | −2656.00 | − | 14608.0i | −0.197768 | − | 1.08772i | ||||
| \(566\) | 0 | 0 | ||||||||
| \(567\) | 0 | 0 | ||||||||
| \(568\) | 0 | 0 | ||||||||
| \(569\) | 26806.0 | 1.97498 | 0.987492 | − | 0.157669i | \(-0.0503978\pi\) | ||||
| 0.987492 | + | 0.157669i | \(0.0503978\pi\) | |||||||
| \(570\) | 0 | 0 | ||||||||
| \(571\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(572\) | 0 | 0 | ||||||||
| \(573\) | 0 | 0 | ||||||||
| \(574\) | 0 | 0 | ||||||||
| \(575\) | 0 | 0 | ||||||||
| \(576\) | 0 | 0 | ||||||||
| \(577\) | − | 27504.0i | − | 1.98441i | −0.124603 | − | 0.992207i | \(-0.539766\pi\) | ||
| 0.124603 | − | 0.992207i | \(-0.460234\pi\) | |||||||
| \(578\) | 0 | 0 | ||||||||
| \(579\) | 0 | 0 | ||||||||
| \(580\) | 0 | 0 | ||||||||
| \(581\) | 0 | 0 | ||||||||
| \(582\) | 0 | 0 | ||||||||
| \(583\) | 0 | 0 | ||||||||
| \(584\) | 0 | 0 | ||||||||
| \(585\) | 4968.00 | + | 27324.0i | 0.351114 | + | 1.93113i | ||||
| \(586\) | 0 | 0 | ||||||||
| \(587\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(588\) | 0 | 0 | ||||||||
| \(589\) | 0 | 0 | ||||||||
| \(590\) | 0 | 0 | ||||||||
| \(591\) | 0 | 0 | ||||||||
| \(592\) | 0 | 0 | ||||||||
| \(593\) | − | 24368.0i | − | 1.68748i | −0.536755 | − | 0.843738i | \(-0.680350\pi\) | ||
| 0.536755 | − | 0.843738i | \(-0.319650\pi\) | |||||||
| \(594\) | 0 | 0 | ||||||||
| \(595\) | 0 | 0 | ||||||||
| \(596\) | 0 | 0 | ||||||||
| \(597\) | 0 | 0 | ||||||||
| \(598\) | 0 | 0 | ||||||||
| \(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(600\) | 0 | 0 | ||||||||
| \(601\) | 17030.0 | 1.15585 | 0.577927 | − | 0.816089i | \(-0.303862\pi\) | ||||
| 0.577927 | + | 0.816089i | \(0.303862\pi\) | |||||||
| \(602\) | 0 | 0 | ||||||||
| \(603\) | 0 | 0 | ||||||||
| \(604\) | 0 | 0 | ||||||||
| \(605\) | 14641.0 | − | 2662.00i | 0.983870 | − | 0.178885i | ||||
| \(606\) | 0 | 0 | ||||||||
| \(607\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(608\) | 0 | 0 | ||||||||
| \(609\) | 0 | 0 | ||||||||
| \(610\) | 0 | 0 | ||||||||
| \(611\) | 0 | 0 | ||||||||
| \(612\) | 0 | 0 | ||||||||
| \(613\) | 19548.0i | 1.28799i | 0.765031 | + | 0.643994i | \(0.222724\pi\) | ||||
| −0.765031 | + | 0.643994i | \(0.777276\pi\) | |||||||
| \(614\) | 0 | 0 | ||||||||
| \(615\) | 0 | 0 | ||||||||
| \(616\) | 0 | 0 | ||||||||
| \(617\) | − | 26464.0i | − | 1.72674i | −0.504569 | − | 0.863372i | \(-0.668348\pi\) | ||
| 0.504569 | − | 0.863372i | \(-0.331652\pi\) | |||||||
| \(618\) | 0 | 0 | ||||||||
| \(619\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(620\) | 0 | 0 | ||||||||
| \(621\) | 0 | 0 | ||||||||
| \(622\) | 0 | 0 | ||||||||
| \(623\) | 0 | 0 | ||||||||
| \(624\) | 0 | 0 | ||||||||
| \(625\) | 11753.0 | − | 10296.0i | 0.752192 | − | 0.658944i | ||||
| \(626\) | 0 | 0 | ||||||||
| \(627\) | 0 | 0 | ||||||||
| \(628\) | 0 | 0 | ||||||||
| \(629\) | −41184.0 | −2.61067 | ||||||||
| \(630\) | 0 | 0 | ||||||||
| \(631\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(632\) | 0 | 0 | ||||||||
| \(633\) | 0 | 0 | ||||||||
| \(634\) | 0 | 0 | ||||||||
| \(635\) | 0 | 0 | ||||||||
| \(636\) | 0 | 0 | ||||||||
| \(637\) | − | 31556.0i | − | 1.96279i | ||||||
| \(638\) | 0 | 0 | ||||||||
| \(639\) | 0 | 0 | ||||||||
| \(640\) | 0 | 0 | ||||||||
| \(641\) | −28850.0 | −1.77770 | −0.888851 | − | 0.458197i | \(-0.848495\pi\) | ||||
| −0.888851 | + | 0.458197i | \(0.848495\pi\) | |||||||
| \(642\) | 0 | 0 | ||||||||
| \(643\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(644\) | 0 | 0 | ||||||||
| \(645\) | 0 | 0 | ||||||||
| \(646\) | 0 | 0 | ||||||||
| \(647\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(648\) | 0 | 0 | ||||||||
| \(649\) | 0 | 0 | ||||||||
| \(650\) | 0 | 0 | ||||||||
| \(651\) | 0 | 0 | ||||||||
| \(652\) | 0 | 0 | ||||||||
| \(653\) | 1012.00i | 0.0606472i | 0.999540 | + | 0.0303236i | \(0.00965378\pi\) | ||||
| −0.999540 | + | 0.0303236i | \(0.990346\pi\) | |||||||
| \(654\) | 0 | 0 | ||||||||
| \(655\) | 0 | 0 | ||||||||
| \(656\) | 0 | 0 | ||||||||
| \(657\) | 15984.0i | 0.949156i | ||||||||
| \(658\) | 0 | 0 | ||||||||
| \(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(660\) | 0 | 0 | ||||||||
| \(661\) | 25850.0 | 1.52110 | 0.760551 | − | 0.649278i | \(-0.224929\pi\) | ||||
| 0.760551 | + | 0.649278i | \(0.224929\pi\) | |||||||
| \(662\) | 0 | 0 | ||||||||
| \(663\) | 0 | 0 | ||||||||
| \(664\) | 0 | 0 | ||||||||
| \(665\) | 0 | 0 | ||||||||
| \(666\) | 0 | 0 | ||||||||
| \(667\) | 0 | 0 | ||||||||
| \(668\) | 0 | 0 | ||||||||
| \(669\) | 0 | 0 | ||||||||
| \(670\) | 0 | 0 | ||||||||
| \(671\) | 0 | 0 | ||||||||
| \(672\) | 0 | 0 | ||||||||
| \(673\) | 34632.0i | 1.98360i | 0.127784 | + | 0.991802i | \(0.459214\pi\) | ||||
| −0.127784 | + | 0.991802i | \(0.540786\pi\) | |||||||
| \(674\) | 0 | 0 | ||||||||
| \(675\) | 0 | 0 | ||||||||
| \(676\) | 0 | 0 | ||||||||
| \(677\) | − | 34996.0i | − | 1.98671i | −0.115072 | − | 0.993357i | \(-0.536710\pi\) | ||
| 0.115072 | − | 0.993357i | \(-0.463290\pi\) | |||||||
| \(678\) | 0 | 0 | ||||||||
| \(679\) | 0 | 0 | ||||||||
| \(680\) | 0 | 0 | ||||||||
| \(681\) | 0 | 0 | ||||||||
| \(682\) | 0 | 0 | ||||||||
| \(683\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(684\) | 0 | 0 | ||||||||
| \(685\) | 5552.00 | + | 30536.0i | 0.309680 | + | 1.70324i | ||||
| \(686\) | 0 | 0 | ||||||||
| \(687\) | 0 | 0 | ||||||||
| \(688\) | 0 | 0 | ||||||||
| \(689\) | 52624.0 | 2.90975 | ||||||||
| \(690\) | 0 | 0 | ||||||||
| \(691\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(692\) | 0 | 0 | ||||||||
| \(693\) | 0 | 0 | ||||||||
| \(694\) | 0 | 0 | ||||||||
| \(695\) | 0 | 0 | ||||||||
| \(696\) | 0 | 0 | ||||||||
| \(697\) | − | 23920.0i | − | 1.29991i | ||||||
| \(698\) | 0 | 0 | ||||||||
| \(699\) | 0 | 0 | ||||||||
| \(700\) | 0 | 0 | ||||||||
| \(701\) | −20030.0 | −1.07920 | −0.539602 | − | 0.841920i | \(-0.681425\pi\) | ||||
| −0.539602 | + | 0.841920i | \(0.681425\pi\) | |||||||
| \(702\) | 0 | 0 | ||||||||
| \(703\) | 0 | 0 | ||||||||
| \(704\) | 0 | 0 | ||||||||
| \(705\) | 0 | 0 | ||||||||
| \(706\) | 0 | 0 | ||||||||
| \(707\) | 0 | 0 | ||||||||
| \(708\) | 0 | 0 | ||||||||
| \(709\) | −36810.0 | −1.94983 | −0.974914 | − | 0.222580i | \(-0.928552\pi\) | ||||
| −0.974914 | + | 0.222580i | \(0.928552\pi\) | |||||||
| \(710\) | 0 | 0 | ||||||||
| \(711\) | 0 | 0 | ||||||||
| \(712\) | 0 | 0 | ||||||||
| \(713\) | 0 | 0 | ||||||||
| \(714\) | 0 | 0 | ||||||||
| \(715\) | 0 | 0 | ||||||||
| \(716\) | 0 | 0 | ||||||||
| \(717\) | 0 | 0 | ||||||||
| \(718\) | 0 | 0 | ||||||||
| \(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(720\) | 0 | 0 | ||||||||
| \(721\) | 0 | 0 | ||||||||
| \(722\) | 0 | 0 | ||||||||
| \(723\) | 0 | 0 | ||||||||
| \(724\) | 0 | 0 | ||||||||
| \(725\) | −15210.0 | + | 5720.00i | −0.779152 | + | 0.293014i | ||||
| \(726\) | 0 | 0 | ||||||||
| \(727\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(728\) | 0 | 0 | ||||||||
| \(729\) | 19683.0 | 1.00000 | ||||||||
| \(730\) | 0 | 0 | ||||||||
| \(731\) | 0 | 0 | ||||||||
| \(732\) | 0 | 0 | ||||||||
| \(733\) | 8732.00i | 0.440005i | 0.975499 | + | 0.220003i | \(0.0706066\pi\) | ||||
| −0.975499 | + | 0.220003i | \(0.929393\pi\) | |||||||
| \(734\) | 0 | 0 | ||||||||
| \(735\) | 0 | 0 | ||||||||
| \(736\) | 0 | 0 | ||||||||
| \(737\) | 0 | 0 | ||||||||
| \(738\) | 0 | 0 | ||||||||
| \(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(740\) | 0 | 0 | ||||||||
| \(741\) | 0 | 0 | ||||||||
| \(742\) | 0 | 0 | ||||||||
| \(743\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(744\) | 0 | 0 | ||||||||
| \(745\) | −38654.0 | + | 7028.00i | −1.90090 | + | 0.345619i | ||||
| \(746\) | 0 | 0 | ||||||||
| \(747\) | 0 | 0 | ||||||||
| \(748\) | 0 | 0 | ||||||||
| \(749\) | 0 | 0 | ||||||||
| \(750\) | 0 | 0 | ||||||||
| \(751\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(752\) | 0 | 0 | ||||||||
| \(753\) | 0 | 0 | ||||||||
| \(754\) | 0 | 0 | ||||||||
| \(755\) | 0 | 0 | ||||||||
| \(756\) | 0 | 0 | ||||||||
| \(757\) | 22516.0i | 1.08105i | 0.841327 | + | 0.540527i | \(0.181775\pi\) | ||||
| −0.841327 | + | 0.540527i | \(0.818225\pi\) | |||||||
| \(758\) | 0 | 0 | ||||||||
| \(759\) | 0 | 0 | ||||||||
| \(760\) | 0 | 0 | ||||||||
| \(761\) | 31882.0 | 1.51869 | 0.759344 | − | 0.650689i | \(-0.225520\pi\) | ||||
| 0.759344 | + | 0.650689i | \(0.225520\pi\) | |||||||
| \(762\) | 0 | 0 | ||||||||
| \(763\) | 0 | 0 | ||||||||
| \(764\) | 0 | 0 | ||||||||
| \(765\) | 5616.00 | + | 30888.0i | 0.265421 | + | 1.45981i | ||||
| \(766\) | 0 | 0 | ||||||||
| \(767\) | 0 | 0 | ||||||||
| \(768\) | 0 | 0 | ||||||||
| \(769\) | 9650.00 | 0.452520 | 0.226260 | − | 0.974067i | \(-0.427350\pi\) | ||||
| 0.226260 | + | 0.974067i | \(0.427350\pi\) | |||||||
| \(770\) | 0 | 0 | ||||||||
| \(771\) | 0 | 0 | ||||||||
| \(772\) | 0 | 0 | ||||||||
| \(773\) | − | 16852.0i | − | 0.784119i | −0.919940 | − | 0.392060i | \(-0.871763\pi\) | ||
| 0.919940 | − | 0.392060i | \(-0.128237\pi\) | |||||||
| \(774\) | 0 | 0 | ||||||||
| \(775\) | 0 | 0 | ||||||||
| \(776\) | 0 | 0 | ||||||||
| \(777\) | 0 | 0 | ||||||||
| \(778\) | 0 | 0 | ||||||||
| \(779\) | 0 | 0 | ||||||||
| \(780\) | 0 | 0 | ||||||||
| \(781\) | 0 | 0 | ||||||||
| \(782\) | 0 | 0 | ||||||||
| \(783\) | 0 | 0 | ||||||||
| \(784\) | 0 | 0 | ||||||||
| \(785\) | 7848.00 | + | 43164.0i | 0.356824 | + | 1.96253i | ||||
| \(786\) | 0 | 0 | ||||||||
| \(787\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(788\) | 0 | 0 | ||||||||
| \(789\) | 0 | 0 | ||||||||
| \(790\) | 0 | 0 | ||||||||
| \(791\) | 0 | 0 | ||||||||
| \(792\) | 0 | 0 | ||||||||
| \(793\) | 76360.0i | 3.41945i | ||||||||
| \(794\) | 0 | 0 | ||||||||
| \(795\) | 0 | 0 | ||||||||
| \(796\) | 0 | 0 | ||||||||
| \(797\) | 16276.0i | 0.723370i | 0.932300 | + | 0.361685i | \(0.117798\pi\) | ||||
| −0.932300 | + | 0.361685i | \(0.882202\pi\) | |||||||
| \(798\) | 0 | 0 | ||||||||
| \(799\) | 0 | 0 | ||||||||
| \(800\) | 0 | 0 | ||||||||
| \(801\) | −45090.0 | −1.98898 | ||||||||
| \(802\) | 0 | 0 | ||||||||
| \(803\) | 0 | 0 | ||||||||
| \(804\) | 0 | 0 | ||||||||
| \(805\) | 0 | 0 | ||||||||
| \(806\) | 0 | 0 | ||||||||
| \(807\) | 0 | 0 | ||||||||
| \(808\) | 0 | 0 | ||||||||
| \(809\) | −23270.0 | −1.01129 | −0.505643 | − | 0.862743i | \(-0.668745\pi\) | ||||
| −0.505643 | + | 0.862743i | \(0.668745\pi\) | |||||||
| \(810\) | 0 | 0 | ||||||||
| \(811\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(812\) | 0 | 0 | ||||||||
| \(813\) | 0 | 0 | ||||||||
| \(814\) | 0 | 0 | ||||||||
| \(815\) | 0 | 0 | ||||||||
| \(816\) | 0 | 0 | ||||||||
| \(817\) | 0 | 0 | ||||||||
| \(818\) | 0 | 0 | ||||||||
| \(819\) | 0 | 0 | ||||||||
| \(820\) | 0 | 0 | ||||||||
| \(821\) | 1850.00 | 0.0786424 | 0.0393212 | − | 0.999227i | \(-0.487480\pi\) | ||||
| 0.0393212 | + | 0.999227i | \(0.487480\pi\) | |||||||
| \(822\) | 0 | 0 | ||||||||
| \(823\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(824\) | 0 | 0 | ||||||||
| \(825\) | 0 | 0 | ||||||||
| \(826\) | 0 | 0 | ||||||||
| \(827\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(828\) | 0 | 0 | ||||||||
| \(829\) | −23166.0 | −0.970553 | −0.485276 | − | 0.874361i | \(-0.661281\pi\) | ||||
| −0.485276 | + | 0.874361i | \(0.661281\pi\) | |||||||
| \(830\) | 0 | 0 | ||||||||
| \(831\) | 0 | 0 | ||||||||
| \(832\) | 0 | 0 | ||||||||
| \(833\) | − | 35672.0i | − | 1.48375i | ||||||
| \(834\) | 0 | 0 | ||||||||
| \(835\) | 0 | 0 | ||||||||
| \(836\) | 0 | 0 | ||||||||
| \(837\) | 0 | 0 | ||||||||
| \(838\) | 0 | 0 | ||||||||
| \(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(840\) | 0 | 0 | ||||||||
| \(841\) | −7489.00 | −0.307065 | ||||||||
| \(842\) | 0 | 0 | ||||||||
| \(843\) | 0 | 0 | ||||||||
| \(844\) | 0 | 0 | ||||||||
| \(845\) | 68937.0 | − | 12534.0i | 2.80651 | − | 0.510275i | ||||
| \(846\) | 0 | 0 | ||||||||
| \(847\) | 0 | 0 | ||||||||
| \(848\) | 0 | 0 | ||||||||
| \(849\) | 0 | 0 | ||||||||
| \(850\) | 0 | 0 | ||||||||
| \(851\) | 0 | 0 | ||||||||
| \(852\) | 0 | 0 | ||||||||
| \(853\) | 45468.0i | 1.82508i | 0.408986 | + | 0.912541i | \(0.365883\pi\) | ||||
| −0.408986 | + | 0.912541i | \(0.634117\pi\) | |||||||
| \(854\) | 0 | 0 | ||||||||
| \(855\) | 0 | 0 | ||||||||
| \(856\) | 0 | 0 | ||||||||
| \(857\) | − | 20056.0i | − | 0.799416i | −0.916642 | − | 0.399708i | \(-0.869111\pi\) | ||
| 0.916642 | − | 0.399708i | \(-0.130889\pi\) | |||||||
| \(858\) | 0 | 0 | ||||||||
| \(859\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(860\) | 0 | 0 | ||||||||
| \(861\) | 0 | 0 | ||||||||
| \(862\) | 0 | 0 | ||||||||
| \(863\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(864\) | 0 | 0 | ||||||||
| \(865\) | −4024.00 | − | 22132.0i | −0.158174 | − | 0.869954i | ||||
| \(866\) | 0 | 0 | ||||||||
| \(867\) | 0 | 0 | ||||||||
| \(868\) | 0 | 0 | ||||||||
| \(869\) | 0 | 0 | ||||||||
| \(870\) | 0 | 0 | ||||||||
| \(871\) | 0 | 0 | ||||||||
| \(872\) | 0 | 0 | ||||||||
| \(873\) | − | 49032.0i | − | 1.90090i | ||||||
| \(874\) | 0 | 0 | ||||||||
| \(875\) | 0 | 0 | ||||||||
| \(876\) | 0 | 0 | ||||||||
| \(877\) | − | 29844.0i | − | 1.14910i | −0.818470 | − | 0.574550i | \(-0.805177\pi\) | ||
| 0.818470 | − | 0.574550i | \(-0.194823\pi\) | |||||||
| \(878\) | 0 | 0 | ||||||||
| \(879\) | 0 | 0 | ||||||||
| \(880\) | 0 | 0 | ||||||||
| \(881\) | 7150.00 | 0.273427 | 0.136714 | − | 0.990611i | \(-0.456346\pi\) | ||||
| 0.136714 | + | 0.990611i | \(0.456346\pi\) | |||||||
| \(882\) | 0 | 0 | ||||||||
| \(883\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(884\) | 0 | 0 | ||||||||
| \(885\) | 0 | 0 | ||||||||
| \(886\) | 0 | 0 | ||||||||
| \(887\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(888\) | 0 | 0 | ||||||||
| \(889\) | 0 | 0 | ||||||||
| \(890\) | 0 | 0 | ||||||||
| \(891\) | 0 | 0 | ||||||||
| \(892\) | 0 | 0 | ||||||||
| \(893\) | 0 | 0 | ||||||||
| \(894\) | 0 | 0 | ||||||||
| \(895\) | 0 | 0 | ||||||||
| \(896\) | 0 | 0 | ||||||||
| \(897\) | 0 | 0 | ||||||||
| \(898\) | 0 | 0 | ||||||||
| \(899\) | 0 | 0 | ||||||||
| \(900\) | 0 | 0 | ||||||||
| \(901\) | 59488.0 | 2.19959 | ||||||||
| \(902\) | 0 | 0 | ||||||||
| \(903\) | 0 | 0 | ||||||||
| \(904\) | 0 | 0 | ||||||||
| \(905\) | −43362.0 | + | 7884.00i | −1.59271 | + | 0.289583i | ||||
| \(906\) | 0 | 0 | ||||||||
| \(907\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(908\) | 0 | 0 | ||||||||
| \(909\) | 16146.0 | 0.589141 | ||||||||
| \(910\) | 0 | 0 | ||||||||
| \(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(912\) | 0 | 0 | ||||||||
| \(913\) | 0 | 0 | ||||||||
| \(914\) | 0 | 0 | ||||||||
| \(915\) | 0 | 0 | ||||||||
| \(916\) | 0 | 0 | ||||||||
| \(917\) | 0 | 0 | ||||||||
| \(918\) | 0 | 0 | ||||||||
| \(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(920\) | 0 | 0 | ||||||||
| \(921\) | 0 | 0 | ||||||||
| \(922\) | 0 | 0 | ||||||||
| \(923\) | 0 | 0 | ||||||||
| \(924\) | 0 | 0 | ||||||||
| \(925\) | −17424.0 | − | 46332.0i | −0.619349 | − | 1.64690i | ||||
| \(926\) | 0 | 0 | ||||||||
| \(927\) | 0 | 0 | ||||||||
| \(928\) | 0 | 0 | ||||||||
| \(929\) | −30866.0 | −1.09008 | −0.545038 | − | 0.838411i | \(-0.683485\pi\) | ||||
| −0.545038 | + | 0.838411i | \(0.683485\pi\) | |||||||
| \(930\) | 0 | 0 | ||||||||
| \(931\) | 0 | 0 | ||||||||
| \(932\) | 0 | 0 | ||||||||
| \(933\) | 0 | 0 | ||||||||
| \(934\) | 0 | 0 | ||||||||
| \(935\) | 0 | 0 | ||||||||
| \(936\) | 0 | 0 | ||||||||
| \(937\) | 24336.0i | 0.848476i | 0.905551 | + | 0.424238i | \(0.139458\pi\) | ||||
| −0.905551 | + | 0.424238i | \(0.860542\pi\) | |||||||
| \(938\) | 0 | 0 | ||||||||
| \(939\) | 0 | 0 | ||||||||
| \(940\) | 0 | 0 | ||||||||
| \(941\) | −31378.0 | −1.08703 | −0.543514 | − | 0.839400i | \(-0.682907\pi\) | ||||
| −0.543514 | + | 0.839400i | \(0.682907\pi\) | |||||||
| \(942\) | 0 | 0 | ||||||||
| \(943\) | 0 | 0 | ||||||||
| \(944\) | 0 | 0 | ||||||||
| \(945\) | 0 | 0 | ||||||||
| \(946\) | 0 | 0 | ||||||||
| \(947\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(948\) | 0 | 0 | ||||||||
| \(949\) | 54464.0 | 1.86299 | ||||||||
| \(950\) | 0 | 0 | ||||||||
| \(951\) | 0 | 0 | ||||||||
| \(952\) | 0 | 0 | ||||||||
| \(953\) | − | 15512.0i | − | 0.527264i | −0.964623 | − | 0.263632i | \(-0.915079\pi\) | ||
| 0.964623 | − | 0.263632i | \(-0.0849205\pi\) | |||||||
| \(954\) | 0 | 0 | ||||||||
| \(955\) | 0 | 0 | ||||||||
| \(956\) | 0 | 0 | ||||||||
| \(957\) | 0 | 0 | ||||||||
| \(958\) | 0 | 0 | ||||||||
| \(959\) | 0 | 0 | ||||||||
| \(960\) | 0 | 0 | ||||||||
| \(961\) | −29791.0 | −1.00000 | ||||||||
| \(962\) | 0 | 0 | ||||||||
| \(963\) | 0 | 0 | ||||||||
| \(964\) | 0 | 0 | ||||||||
| \(965\) | 144.000 | + | 792.000i | 0.00480365 | + | 0.0264201i | ||||
| \(966\) | 0 | 0 | ||||||||
| \(967\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(968\) | 0 | 0 | ||||||||
| \(969\) | 0 | 0 | ||||||||
| \(970\) | 0 | 0 | ||||||||
| \(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(972\) | 0 | 0 | ||||||||
| \(973\) | 0 | 0 | ||||||||
| \(974\) | 0 | 0 | ||||||||
| \(975\) | 0 | 0 | ||||||||
| \(976\) | 0 | 0 | ||||||||
| \(977\) | − | 22936.0i | − | 0.751062i | −0.926810 | − | 0.375531i | \(-0.877460\pi\) | ||
| 0.926810 | − | 0.375531i | \(-0.122540\pi\) | |||||||
| \(978\) | 0 | 0 | ||||||||
| \(979\) | 0 | 0 | ||||||||
| \(980\) | 0 | 0 | ||||||||
| \(981\) | 47142.0 | 1.53428 | ||||||||
| \(982\) | 0 | 0 | ||||||||
| \(983\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(984\) | 0 | 0 | ||||||||
| \(985\) | −10808.0 | − | 59444.0i | −0.349616 | − | 1.92289i | ||||
| \(986\) | 0 | 0 | ||||||||
| \(987\) | 0 | 0 | ||||||||
| \(988\) | 0 | 0 | ||||||||
| \(989\) | 0 | 0 | ||||||||
| \(990\) | 0 | 0 | ||||||||
| \(991\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(992\) | 0 | 0 | ||||||||
| \(993\) | 0 | 0 | ||||||||
| \(994\) | 0 | 0 | ||||||||
| \(995\) | 0 | 0 | ||||||||
| \(996\) | 0 | 0 | ||||||||
| \(997\) | − | 34164.0i | − | 1.08524i | −0.839978 | − | 0.542620i | \(-0.817432\pi\) | ||
| 0.839978 | − | 0.542620i | \(-0.182568\pi\) | |||||||
| \(998\) | 0 | 0 | ||||||||
| \(999\) | 0 | 0 | ||||||||
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
| By twisting character | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Type | Twist | Min | Dim | |
| 1.1 | even | 1 | trivial | 160.4.c.a.129.2 | yes | 2 | |
| 3.2 | odd | 2 | 1440.4.f.e.289.1 | 2 | |||
| 4.3 | odd | 2 | CM | 160.4.c.a.129.2 | yes | 2 | |
| 5.2 | odd | 4 | 800.4.a.e.1.1 | 1 | |||
| 5.3 | odd | 4 | 800.4.a.g.1.1 | 1 | |||
| 5.4 | even | 2 | inner | 160.4.c.a.129.1 | ✓ | 2 | |
| 8.3 | odd | 2 | 320.4.c.e.129.1 | 2 | |||
| 8.5 | even | 2 | 320.4.c.e.129.1 | 2 | |||
| 12.11 | even | 2 | 1440.4.f.e.289.1 | 2 | |||
| 15.14 | odd | 2 | 1440.4.f.e.289.2 | 2 | |||
| 20.3 | even | 4 | 800.4.a.g.1.1 | 1 | |||
| 20.7 | even | 4 | 800.4.a.e.1.1 | 1 | |||
| 20.19 | odd | 2 | inner | 160.4.c.a.129.1 | ✓ | 2 | |
| 40.3 | even | 4 | 1600.4.a.z.1.1 | 1 | |||
| 40.13 | odd | 4 | 1600.4.a.z.1.1 | 1 | |||
| 40.19 | odd | 2 | 320.4.c.e.129.2 | 2 | |||
| 40.27 | even | 4 | 1600.4.a.bb.1.1 | 1 | |||
| 40.29 | even | 2 | 320.4.c.e.129.2 | 2 | |||
| 40.37 | odd | 4 | 1600.4.a.bb.1.1 | 1 | |||
| 60.59 | even | 2 | 1440.4.f.e.289.2 | 2 | |||
| By twisted newform | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Type | |
| 160.4.c.a.129.1 | ✓ | 2 | 5.4 | even | 2 | inner | |
| 160.4.c.a.129.1 | ✓ | 2 | 20.19 | odd | 2 | inner | |
| 160.4.c.a.129.2 | yes | 2 | 1.1 | even | 1 | trivial | |
| 160.4.c.a.129.2 | yes | 2 | 4.3 | odd | 2 | CM | |
| 320.4.c.e.129.1 | 2 | 8.3 | odd | 2 | |||
| 320.4.c.e.129.1 | 2 | 8.5 | even | 2 | |||
| 320.4.c.e.129.2 | 2 | 40.19 | odd | 2 | |||
| 320.4.c.e.129.2 | 2 | 40.29 | even | 2 | |||
| 800.4.a.e.1.1 | 1 | 5.2 | odd | 4 | |||
| 800.4.a.e.1.1 | 1 | 20.7 | even | 4 | |||
| 800.4.a.g.1.1 | 1 | 5.3 | odd | 4 | |||
| 800.4.a.g.1.1 | 1 | 20.3 | even | 4 | |||
| 1440.4.f.e.289.1 | 2 | 3.2 | odd | 2 | |||
| 1440.4.f.e.289.1 | 2 | 12.11 | even | 2 | |||
| 1440.4.f.e.289.2 | 2 | 15.14 | odd | 2 | |||
| 1440.4.f.e.289.2 | 2 | 60.59 | even | 2 | |||
| 1600.4.a.z.1.1 | 1 | 40.3 | even | 4 | |||
| 1600.4.a.z.1.1 | 1 | 40.13 | odd | 4 | |||
| 1600.4.a.bb.1.1 | 1 | 40.27 | even | 4 | |||
| 1600.4.a.bb.1.1 | 1 | 40.37 | odd | 4 | |||