Defining parameters
Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 160.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(160, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 18 | 62 |
Cusp forms | 64 | 18 | 46 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(160, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
160.4.c.a | $2$ | $9.440$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(-22\) | \(0\) | \(q+(\beta-11)q^{5}+27 q^{9}-46\beta q^{13}+\cdots\) |
160.4.c.b | $4$ | $9.440$ | \(\Q(i, \sqrt{29})\) | None | \(0\) | \(0\) | \(-12\) | \(0\) | \(q+\beta _{2}q^{3}+(-3+\beta _{1})q^{5}+\beta _{2}q^{7}+11q^{9}+\cdots\) |
160.4.c.c | $4$ | $9.440$ | \(\Q(i, \sqrt{5})\) | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{1}+2\beta _{3})q^{3}-5\beta _{2}q^{5}+(-6\beta _{1}+\cdots)q^{7}+\cdots\) |
160.4.c.d | $8$ | $9.440$ | 8.0.\(\cdots\).22 | None | \(0\) | \(0\) | \(32\) | \(0\) | \(q+\beta _{1}q^{3}+(4-\beta _{4})q^{5}+(\beta _{1}-\beta _{3})q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(160, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(160, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)