Properties

Label 160.4.ba
Level 160160
Weight 44
Character orbit 160.ba
Rep. character χ160(3,)\chi_{160}(3,\cdot)
Character field Q(ζ8)\Q(\zeta_{8})
Dimension 280280
Newform subspaces 11
Sturm bound 9696
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 160=255 160 = 2^{5} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 160.ba (of order 88 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 160 160
Character field: Q(ζ8)\Q(\zeta_{8})
Newform subspaces: 1 1
Sturm bound: 9696
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M4(160,[χ])M_{4}(160, [\chi]).

Total New Old
Modular forms 296 296 0
Cusp forms 280 280 0
Eisenstein series 16 16 0

Trace form

280q4q24q34q58q68q788q816q108q11+44q124q1364q148q158q1636q18+48q19+304q208q21436q22++2760q98+O(q100) 280 q - 4 q^{2} - 4 q^{3} - 4 q^{5} - 8 q^{6} - 8 q^{7} - 88 q^{8} - 16 q^{10} - 8 q^{11} + 44 q^{12} - 4 q^{13} - 64 q^{14} - 8 q^{15} - 8 q^{16} - 36 q^{18} + 48 q^{19} + 304 q^{20} - 8 q^{21} - 436 q^{22}+ \cdots + 2760 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(160,[χ])S_{4}^{\mathrm{new}}(160, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
160.4.ba.a 160.ba 160.aa 280280 9.4409.440 None 160.4.u.a 4-4 4-4 4-4 8-8 SU(2)[C8]\mathrm{SU}(2)[C_{8}]