Properties

Label 160.4.a.c.1.2
Level $160$
Weight $4$
Character 160.1
Self dual yes
Analytic conductor $9.440$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,4,Mod(1,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-8,0,10,0,-8,0,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.44030560092\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 160.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.898979 q^{3} +5.00000 q^{5} -28.4949 q^{7} -26.1918 q^{9} -2.60612 q^{11} -33.1918 q^{13} +4.49490 q^{15} +119.576 q^{17} -143.192 q^{19} -25.6163 q^{21} -113.889 q^{23} +25.0000 q^{25} -47.8184 q^{27} -67.6163 q^{29} -117.394 q^{31} -2.34285 q^{33} -142.474 q^{35} -256.384 q^{37} -29.8388 q^{39} +245.959 q^{41} +369.262 q^{43} -130.959 q^{45} +76.3133 q^{47} +468.959 q^{49} +107.496 q^{51} +40.4245 q^{53} -13.0306 q^{55} -128.727 q^{57} -457.980 q^{59} -477.233 q^{61} +746.334 q^{63} -165.959 q^{65} +602.252 q^{67} -102.384 q^{69} +1091.98 q^{71} +117.878 q^{73} +22.4745 q^{75} +74.2612 q^{77} -858.624 q^{79} +664.192 q^{81} +565.748 q^{83} +597.878 q^{85} -60.7857 q^{87} -625.151 q^{89} +945.798 q^{91} -105.535 q^{93} -715.959 q^{95} +805.959 q^{97} +68.2591 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{3} + 10 q^{5} - 8 q^{7} + 26 q^{9} - 64 q^{11} + 12 q^{13} - 40 q^{15} + 4 q^{17} - 208 q^{19} - 208 q^{21} - 120 q^{23} + 50 q^{25} - 272 q^{27} - 292 q^{29} - 176 q^{31} + 544 q^{33} - 40 q^{35}+ \cdots - 3136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.898979 0.173009 0.0865043 0.996251i \(-0.472430\pi\)
0.0865043 + 0.996251i \(0.472430\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −28.4949 −1.53858 −0.769290 0.638900i \(-0.779390\pi\)
−0.769290 + 0.638900i \(0.779390\pi\)
\(8\) 0 0
\(9\) −26.1918 −0.970068
\(10\) 0 0
\(11\) −2.60612 −0.0714342 −0.0357171 0.999362i \(-0.511372\pi\)
−0.0357171 + 0.999362i \(0.511372\pi\)
\(12\) 0 0
\(13\) −33.1918 −0.708135 −0.354068 0.935220i \(-0.615202\pi\)
−0.354068 + 0.935220i \(0.615202\pi\)
\(14\) 0 0
\(15\) 4.49490 0.0773718
\(16\) 0 0
\(17\) 119.576 1.70596 0.852980 0.521944i \(-0.174793\pi\)
0.852980 + 0.521944i \(0.174793\pi\)
\(18\) 0 0
\(19\) −143.192 −1.72897 −0.864486 0.502657i \(-0.832356\pi\)
−0.864486 + 0.502657i \(0.832356\pi\)
\(20\) 0 0
\(21\) −25.6163 −0.266188
\(22\) 0 0
\(23\) −113.889 −1.03250 −0.516249 0.856439i \(-0.672672\pi\)
−0.516249 + 0.856439i \(0.672672\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −47.8184 −0.340839
\(28\) 0 0
\(29\) −67.6163 −0.432967 −0.216483 0.976286i \(-0.569459\pi\)
−0.216483 + 0.976286i \(0.569459\pi\)
\(30\) 0 0
\(31\) −117.394 −0.680147 −0.340074 0.940399i \(-0.610452\pi\)
−0.340074 + 0.940399i \(0.610452\pi\)
\(32\) 0 0
\(33\) −2.34285 −0.0123587
\(34\) 0 0
\(35\) −142.474 −0.688074
\(36\) 0 0
\(37\) −256.384 −1.13917 −0.569584 0.821933i \(-0.692896\pi\)
−0.569584 + 0.821933i \(0.692896\pi\)
\(38\) 0 0
\(39\) −29.8388 −0.122514
\(40\) 0 0
\(41\) 245.959 0.936887 0.468444 0.883493i \(-0.344815\pi\)
0.468444 + 0.883493i \(0.344815\pi\)
\(42\) 0 0
\(43\) 369.262 1.30958 0.654790 0.755811i \(-0.272757\pi\)
0.654790 + 0.755811i \(0.272757\pi\)
\(44\) 0 0
\(45\) −130.959 −0.433828
\(46\) 0 0
\(47\) 76.3133 0.236839 0.118420 0.992964i \(-0.462217\pi\)
0.118420 + 0.992964i \(0.462217\pi\)
\(48\) 0 0
\(49\) 468.959 1.36723
\(50\) 0 0
\(51\) 107.496 0.295146
\(52\) 0 0
\(53\) 40.4245 0.104769 0.0523843 0.998627i \(-0.483318\pi\)
0.0523843 + 0.998627i \(0.483318\pi\)
\(54\) 0 0
\(55\) −13.0306 −0.0319463
\(56\) 0 0
\(57\) −128.727 −0.299127
\(58\) 0 0
\(59\) −457.980 −1.01057 −0.505287 0.862951i \(-0.668613\pi\)
−0.505287 + 0.862951i \(0.668613\pi\)
\(60\) 0 0
\(61\) −477.233 −1.00169 −0.500847 0.865536i \(-0.666978\pi\)
−0.500847 + 0.865536i \(0.666978\pi\)
\(62\) 0 0
\(63\) 746.334 1.49253
\(64\) 0 0
\(65\) −165.959 −0.316688
\(66\) 0 0
\(67\) 602.252 1.09816 0.549081 0.835769i \(-0.314978\pi\)
0.549081 + 0.835769i \(0.314978\pi\)
\(68\) 0 0
\(69\) −102.384 −0.178631
\(70\) 0 0
\(71\) 1091.98 1.82527 0.912633 0.408780i \(-0.134046\pi\)
0.912633 + 0.408780i \(0.134046\pi\)
\(72\) 0 0
\(73\) 117.878 0.188993 0.0944967 0.995525i \(-0.469876\pi\)
0.0944967 + 0.995525i \(0.469876\pi\)
\(74\) 0 0
\(75\) 22.4745 0.0346017
\(76\) 0 0
\(77\) 74.2612 0.109907
\(78\) 0 0
\(79\) −858.624 −1.22282 −0.611410 0.791314i \(-0.709397\pi\)
−0.611410 + 0.791314i \(0.709397\pi\)
\(80\) 0 0
\(81\) 664.192 0.911100
\(82\) 0 0
\(83\) 565.748 0.748180 0.374090 0.927392i \(-0.377955\pi\)
0.374090 + 0.927392i \(0.377955\pi\)
\(84\) 0 0
\(85\) 597.878 0.762929
\(86\) 0 0
\(87\) −60.7857 −0.0749070
\(88\) 0 0
\(89\) −625.151 −0.744560 −0.372280 0.928120i \(-0.621424\pi\)
−0.372280 + 0.928120i \(0.621424\pi\)
\(90\) 0 0
\(91\) 945.798 1.08952
\(92\) 0 0
\(93\) −105.535 −0.117671
\(94\) 0 0
\(95\) −715.959 −0.773220
\(96\) 0 0
\(97\) 805.959 0.843637 0.421818 0.906680i \(-0.361392\pi\)
0.421818 + 0.906680i \(0.361392\pi\)
\(98\) 0 0
\(99\) 68.2591 0.0692960
\(100\) 0 0
\(101\) −260.988 −0.257121 −0.128561 0.991702i \(-0.541036\pi\)
−0.128561 + 0.991702i \(0.541036\pi\)
\(102\) 0 0
\(103\) 1640.01 1.56888 0.784441 0.620203i \(-0.212950\pi\)
0.784441 + 0.620203i \(0.212950\pi\)
\(104\) 0 0
\(105\) −128.082 −0.119043
\(106\) 0 0
\(107\) −679.001 −0.613472 −0.306736 0.951795i \(-0.599237\pi\)
−0.306736 + 0.951795i \(0.599237\pi\)
\(108\) 0 0
\(109\) −840.220 −0.738335 −0.369168 0.929363i \(-0.620357\pi\)
−0.369168 + 0.929363i \(0.620357\pi\)
\(110\) 0 0
\(111\) −230.484 −0.197086
\(112\) 0 0
\(113\) −1609.15 −1.33961 −0.669806 0.742536i \(-0.733623\pi\)
−0.669806 + 0.742536i \(0.733623\pi\)
\(114\) 0 0
\(115\) −569.444 −0.461747
\(116\) 0 0
\(117\) 869.355 0.686939
\(118\) 0 0
\(119\) −3407.29 −2.62476
\(120\) 0 0
\(121\) −1324.21 −0.994897
\(122\) 0 0
\(123\) 221.112 0.162090
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1149.60 0.803234 0.401617 0.915808i \(-0.368448\pi\)
0.401617 + 0.915808i \(0.368448\pi\)
\(128\) 0 0
\(129\) 331.959 0.226569
\(130\) 0 0
\(131\) −2436.99 −1.62535 −0.812673 0.582719i \(-0.801989\pi\)
−0.812673 + 0.582719i \(0.801989\pi\)
\(132\) 0 0
\(133\) 4080.24 2.66016
\(134\) 0 0
\(135\) −239.092 −0.152428
\(136\) 0 0
\(137\) −764.465 −0.476735 −0.238367 0.971175i \(-0.576612\pi\)
−0.238367 + 0.971175i \(0.576612\pi\)
\(138\) 0 0
\(139\) −2547.35 −1.55441 −0.777207 0.629245i \(-0.783364\pi\)
−0.777207 + 0.629245i \(0.783364\pi\)
\(140\) 0 0
\(141\) 68.6041 0.0409752
\(142\) 0 0
\(143\) 86.5020 0.0505850
\(144\) 0 0
\(145\) −338.082 −0.193629
\(146\) 0 0
\(147\) 421.585 0.236542
\(148\) 0 0
\(149\) 2565.76 1.41070 0.705352 0.708857i \(-0.250789\pi\)
0.705352 + 0.708857i \(0.250789\pi\)
\(150\) 0 0
\(151\) 524.949 0.282912 0.141456 0.989945i \(-0.454822\pi\)
0.141456 + 0.989945i \(0.454822\pi\)
\(152\) 0 0
\(153\) −3131.90 −1.65490
\(154\) 0 0
\(155\) −586.969 −0.304171
\(156\) 0 0
\(157\) −3569.59 −1.81455 −0.907275 0.420537i \(-0.861842\pi\)
−0.907275 + 0.420537i \(0.861842\pi\)
\(158\) 0 0
\(159\) 36.3408 0.0181259
\(160\) 0 0
\(161\) 3245.25 1.58858
\(162\) 0 0
\(163\) 1450.96 0.697227 0.348613 0.937267i \(-0.386653\pi\)
0.348613 + 0.937267i \(0.386653\pi\)
\(164\) 0 0
\(165\) −11.7143 −0.00552699
\(166\) 0 0
\(167\) −3281.38 −1.52048 −0.760242 0.649640i \(-0.774920\pi\)
−0.760242 + 0.649640i \(0.774920\pi\)
\(168\) 0 0
\(169\) −1095.30 −0.498544
\(170\) 0 0
\(171\) 3750.46 1.67722
\(172\) 0 0
\(173\) 1387.01 0.609553 0.304776 0.952424i \(-0.401418\pi\)
0.304776 + 0.952424i \(0.401418\pi\)
\(174\) 0 0
\(175\) −712.372 −0.307716
\(176\) 0 0
\(177\) −411.714 −0.174838
\(178\) 0 0
\(179\) −3009.90 −1.25682 −0.628409 0.777883i \(-0.716293\pi\)
−0.628409 + 0.777883i \(0.716293\pi\)
\(180\) 0 0
\(181\) −2304.14 −0.946217 −0.473109 0.881004i \(-0.656868\pi\)
−0.473109 + 0.881004i \(0.656868\pi\)
\(182\) 0 0
\(183\) −429.022 −0.173302
\(184\) 0 0
\(185\) −1281.92 −0.509451
\(186\) 0 0
\(187\) −311.628 −0.121864
\(188\) 0 0
\(189\) 1362.58 0.524408
\(190\) 0 0
\(191\) −166.647 −0.0631317 −0.0315658 0.999502i \(-0.510049\pi\)
−0.0315658 + 0.999502i \(0.510049\pi\)
\(192\) 0 0
\(193\) 484.669 0.180763 0.0903815 0.995907i \(-0.471191\pi\)
0.0903815 + 0.995907i \(0.471191\pi\)
\(194\) 0 0
\(195\) −149.194 −0.0547897
\(196\) 0 0
\(197\) 2088.10 0.755182 0.377591 0.925973i \(-0.376753\pi\)
0.377591 + 0.925973i \(0.376753\pi\)
\(198\) 0 0
\(199\) 3401.93 1.21184 0.605921 0.795524i \(-0.292805\pi\)
0.605921 + 0.795524i \(0.292805\pi\)
\(200\) 0 0
\(201\) 541.412 0.189991
\(202\) 0 0
\(203\) 1926.72 0.666154
\(204\) 0 0
\(205\) 1229.80 0.418989
\(206\) 0 0
\(207\) 2982.96 1.00159
\(208\) 0 0
\(209\) 373.176 0.123508
\(210\) 0 0
\(211\) 2246.24 0.732879 0.366439 0.930442i \(-0.380577\pi\)
0.366439 + 0.930442i \(0.380577\pi\)
\(212\) 0 0
\(213\) 981.665 0.315787
\(214\) 0 0
\(215\) 1846.31 0.585662
\(216\) 0 0
\(217\) 3345.13 1.04646
\(218\) 0 0
\(219\) 105.969 0.0326975
\(220\) 0 0
\(221\) −3968.93 −1.20805
\(222\) 0 0
\(223\) 1129.63 0.339217 0.169608 0.985512i \(-0.445750\pi\)
0.169608 + 0.985512i \(0.445750\pi\)
\(224\) 0 0
\(225\) −654.796 −0.194014
\(226\) 0 0
\(227\) 1693.88 0.495273 0.247637 0.968853i \(-0.420346\pi\)
0.247637 + 0.968853i \(0.420346\pi\)
\(228\) 0 0
\(229\) −5250.72 −1.51518 −0.757592 0.652728i \(-0.773624\pi\)
−0.757592 + 0.652728i \(0.773624\pi\)
\(230\) 0 0
\(231\) 66.7593 0.0190149
\(232\) 0 0
\(233\) −6042.60 −1.69899 −0.849493 0.527600i \(-0.823092\pi\)
−0.849493 + 0.527600i \(0.823092\pi\)
\(234\) 0 0
\(235\) 381.566 0.105918
\(236\) 0 0
\(237\) −771.886 −0.211559
\(238\) 0 0
\(239\) 385.416 0.104312 0.0521559 0.998639i \(-0.483391\pi\)
0.0521559 + 0.998639i \(0.483391\pi\)
\(240\) 0 0
\(241\) 4858.73 1.29866 0.649332 0.760505i \(-0.275049\pi\)
0.649332 + 0.760505i \(0.275049\pi\)
\(242\) 0 0
\(243\) 1888.19 0.498467
\(244\) 0 0
\(245\) 2344.80 0.611443
\(246\) 0 0
\(247\) 4752.80 1.22435
\(248\) 0 0
\(249\) 508.596 0.129442
\(250\) 0 0
\(251\) −3784.74 −0.951757 −0.475878 0.879511i \(-0.657870\pi\)
−0.475878 + 0.879511i \(0.657870\pi\)
\(252\) 0 0
\(253\) 296.808 0.0737556
\(254\) 0 0
\(255\) 537.480 0.131993
\(256\) 0 0
\(257\) 3702.36 0.898626 0.449313 0.893374i \(-0.351669\pi\)
0.449313 + 0.893374i \(0.351669\pi\)
\(258\) 0 0
\(259\) 7305.63 1.75270
\(260\) 0 0
\(261\) 1771.00 0.420007
\(262\) 0 0
\(263\) −3517.77 −0.824771 −0.412385 0.911009i \(-0.635304\pi\)
−0.412385 + 0.911009i \(0.635304\pi\)
\(264\) 0 0
\(265\) 202.122 0.0468539
\(266\) 0 0
\(267\) −561.998 −0.128815
\(268\) 0 0
\(269\) −5564.09 −1.26115 −0.630573 0.776130i \(-0.717180\pi\)
−0.630573 + 0.776130i \(0.717180\pi\)
\(270\) 0 0
\(271\) −2585.39 −0.579525 −0.289762 0.957099i \(-0.593576\pi\)
−0.289762 + 0.957099i \(0.593576\pi\)
\(272\) 0 0
\(273\) 850.253 0.188497
\(274\) 0 0
\(275\) −65.1531 −0.0142868
\(276\) 0 0
\(277\) −884.433 −0.191843 −0.0959213 0.995389i \(-0.530580\pi\)
−0.0959213 + 0.995389i \(0.530580\pi\)
\(278\) 0 0
\(279\) 3074.76 0.659789
\(280\) 0 0
\(281\) 3165.55 0.672032 0.336016 0.941856i \(-0.390920\pi\)
0.336016 + 0.941856i \(0.390920\pi\)
\(282\) 0 0
\(283\) −4425.40 −0.929550 −0.464775 0.885429i \(-0.653865\pi\)
−0.464775 + 0.885429i \(0.653865\pi\)
\(284\) 0 0
\(285\) −643.633 −0.133774
\(286\) 0 0
\(287\) −7008.58 −1.44148
\(288\) 0 0
\(289\) 9385.30 1.91030
\(290\) 0 0
\(291\) 724.541 0.145956
\(292\) 0 0
\(293\) 2871.70 0.572582 0.286291 0.958143i \(-0.407578\pi\)
0.286291 + 0.958143i \(0.407578\pi\)
\(294\) 0 0
\(295\) −2289.90 −0.451942
\(296\) 0 0
\(297\) 124.621 0.0243475
\(298\) 0 0
\(299\) 3780.18 0.731148
\(300\) 0 0
\(301\) −10522.1 −2.01489
\(302\) 0 0
\(303\) −234.623 −0.0444842
\(304\) 0 0
\(305\) −2386.16 −0.447972
\(306\) 0 0
\(307\) −3145.45 −0.584757 −0.292379 0.956303i \(-0.594447\pi\)
−0.292379 + 0.956303i \(0.594447\pi\)
\(308\) 0 0
\(309\) 1474.33 0.271430
\(310\) 0 0
\(311\) −306.614 −0.0559052 −0.0279526 0.999609i \(-0.508899\pi\)
−0.0279526 + 0.999609i \(0.508899\pi\)
\(312\) 0 0
\(313\) −3120.66 −0.563547 −0.281773 0.959481i \(-0.590923\pi\)
−0.281773 + 0.959481i \(0.590923\pi\)
\(314\) 0 0
\(315\) 3731.67 0.667478
\(316\) 0 0
\(317\) −8131.12 −1.44066 −0.720330 0.693632i \(-0.756010\pi\)
−0.720330 + 0.693632i \(0.756010\pi\)
\(318\) 0 0
\(319\) 176.216 0.0309286
\(320\) 0 0
\(321\) −610.408 −0.106136
\(322\) 0 0
\(323\) −17122.2 −2.94956
\(324\) 0 0
\(325\) −829.796 −0.141627
\(326\) 0 0
\(327\) −755.341 −0.127738
\(328\) 0 0
\(329\) −2174.54 −0.364396
\(330\) 0 0
\(331\) −7877.80 −1.30817 −0.654083 0.756423i \(-0.726945\pi\)
−0.654083 + 0.756423i \(0.726945\pi\)
\(332\) 0 0
\(333\) 6715.16 1.10507
\(334\) 0 0
\(335\) 3011.26 0.491113
\(336\) 0 0
\(337\) −2169.15 −0.350627 −0.175313 0.984513i \(-0.556094\pi\)
−0.175313 + 0.984513i \(0.556094\pi\)
\(338\) 0 0
\(339\) −1446.59 −0.231765
\(340\) 0 0
\(341\) 305.943 0.0485857
\(342\) 0 0
\(343\) −3589.19 −0.565009
\(344\) 0 0
\(345\) −511.918 −0.0798863
\(346\) 0 0
\(347\) −325.475 −0.0503527 −0.0251764 0.999683i \(-0.508015\pi\)
−0.0251764 + 0.999683i \(0.508015\pi\)
\(348\) 0 0
\(349\) 9311.11 1.42812 0.714058 0.700087i \(-0.246855\pi\)
0.714058 + 0.700087i \(0.246855\pi\)
\(350\) 0 0
\(351\) 1587.18 0.241360
\(352\) 0 0
\(353\) 3144.94 0.474188 0.237094 0.971487i \(-0.423805\pi\)
0.237094 + 0.971487i \(0.423805\pi\)
\(354\) 0 0
\(355\) 5459.89 0.816284
\(356\) 0 0
\(357\) −3063.09 −0.454106
\(358\) 0 0
\(359\) −570.424 −0.0838603 −0.0419302 0.999121i \(-0.513351\pi\)
−0.0419302 + 0.999121i \(0.513351\pi\)
\(360\) 0 0
\(361\) 13644.9 1.98934
\(362\) 0 0
\(363\) −1190.44 −0.172126
\(364\) 0 0
\(365\) 589.388 0.0845204
\(366\) 0 0
\(367\) −1629.17 −0.231722 −0.115861 0.993265i \(-0.536963\pi\)
−0.115861 + 0.993265i \(0.536963\pi\)
\(368\) 0 0
\(369\) −6442.12 −0.908844
\(370\) 0 0
\(371\) −1151.89 −0.161195
\(372\) 0 0
\(373\) −6985.76 −0.969728 −0.484864 0.874589i \(-0.661131\pi\)
−0.484864 + 0.874589i \(0.661131\pi\)
\(374\) 0 0
\(375\) 112.372 0.0154744
\(376\) 0 0
\(377\) 2244.31 0.306599
\(378\) 0 0
\(379\) 11101.3 1.50458 0.752291 0.658831i \(-0.228949\pi\)
0.752291 + 0.658831i \(0.228949\pi\)
\(380\) 0 0
\(381\) 1033.47 0.138967
\(382\) 0 0
\(383\) −6608.71 −0.881695 −0.440848 0.897582i \(-0.645322\pi\)
−0.440848 + 0.897582i \(0.645322\pi\)
\(384\) 0 0
\(385\) 371.306 0.0491520
\(386\) 0 0
\(387\) −9671.66 −1.27038
\(388\) 0 0
\(389\) 503.208 0.0655878 0.0327939 0.999462i \(-0.489560\pi\)
0.0327939 + 0.999462i \(0.489560\pi\)
\(390\) 0 0
\(391\) −13618.3 −1.76140
\(392\) 0 0
\(393\) −2190.80 −0.281199
\(394\) 0 0
\(395\) −4293.12 −0.546862
\(396\) 0 0
\(397\) 1885.18 0.238323 0.119162 0.992875i \(-0.461979\pi\)
0.119162 + 0.992875i \(0.461979\pi\)
\(398\) 0 0
\(399\) 3668.05 0.460231
\(400\) 0 0
\(401\) −13212.7 −1.64541 −0.822706 0.568467i \(-0.807537\pi\)
−0.822706 + 0.568467i \(0.807537\pi\)
\(402\) 0 0
\(403\) 3896.52 0.481636
\(404\) 0 0
\(405\) 3320.96 0.407456
\(406\) 0 0
\(407\) 668.167 0.0813755
\(408\) 0 0
\(409\) −8441.37 −1.02054 −0.510268 0.860016i \(-0.670454\pi\)
−0.510268 + 0.860016i \(0.670454\pi\)
\(410\) 0 0
\(411\) −687.239 −0.0824793
\(412\) 0 0
\(413\) 13050.1 1.55485
\(414\) 0 0
\(415\) 2828.74 0.334596
\(416\) 0 0
\(417\) −2290.02 −0.268927
\(418\) 0 0
\(419\) 12823.2 1.49512 0.747559 0.664195i \(-0.231226\pi\)
0.747559 + 0.664195i \(0.231226\pi\)
\(420\) 0 0
\(421\) −2474.24 −0.286431 −0.143215 0.989692i \(-0.545744\pi\)
−0.143215 + 0.989692i \(0.545744\pi\)
\(422\) 0 0
\(423\) −1998.78 −0.229750
\(424\) 0 0
\(425\) 2989.39 0.341192
\(426\) 0 0
\(427\) 13598.7 1.54119
\(428\) 0 0
\(429\) 77.7635 0.00875165
\(430\) 0 0
\(431\) 12461.3 1.39267 0.696334 0.717718i \(-0.254813\pi\)
0.696334 + 0.717718i \(0.254813\pi\)
\(432\) 0 0
\(433\) −12063.0 −1.33883 −0.669414 0.742890i \(-0.733455\pi\)
−0.669414 + 0.742890i \(0.733455\pi\)
\(434\) 0 0
\(435\) −303.928 −0.0334994
\(436\) 0 0
\(437\) 16307.9 1.78516
\(438\) 0 0
\(439\) 16480.7 1.79176 0.895879 0.444299i \(-0.146547\pi\)
0.895879 + 0.444299i \(0.146547\pi\)
\(440\) 0 0
\(441\) −12282.9 −1.32630
\(442\) 0 0
\(443\) 2159.19 0.231572 0.115786 0.993274i \(-0.463061\pi\)
0.115786 + 0.993274i \(0.463061\pi\)
\(444\) 0 0
\(445\) −3125.76 −0.332978
\(446\) 0 0
\(447\) 2306.56 0.244064
\(448\) 0 0
\(449\) 5552.38 0.583592 0.291796 0.956481i \(-0.405747\pi\)
0.291796 + 0.956481i \(0.405747\pi\)
\(450\) 0 0
\(451\) −641.000 −0.0669257
\(452\) 0 0
\(453\) 471.918 0.0489463
\(454\) 0 0
\(455\) 4728.99 0.487249
\(456\) 0 0
\(457\) 16667.9 1.70611 0.853055 0.521820i \(-0.174747\pi\)
0.853055 + 0.521820i \(0.174747\pi\)
\(458\) 0 0
\(459\) −5717.91 −0.581457
\(460\) 0 0
\(461\) 15255.5 1.54126 0.770629 0.637284i \(-0.219942\pi\)
0.770629 + 0.637284i \(0.219942\pi\)
\(462\) 0 0
\(463\) −6806.85 −0.683242 −0.341621 0.939838i \(-0.610976\pi\)
−0.341621 + 0.939838i \(0.610976\pi\)
\(464\) 0 0
\(465\) −527.673 −0.0526242
\(466\) 0 0
\(467\) 6455.78 0.639696 0.319848 0.947469i \(-0.396368\pi\)
0.319848 + 0.947469i \(0.396368\pi\)
\(468\) 0 0
\(469\) −17161.1 −1.68961
\(470\) 0 0
\(471\) −3208.99 −0.313933
\(472\) 0 0
\(473\) −962.343 −0.0935488
\(474\) 0 0
\(475\) −3579.80 −0.345794
\(476\) 0 0
\(477\) −1058.79 −0.101633
\(478\) 0 0
\(479\) 8481.34 0.809024 0.404512 0.914533i \(-0.367441\pi\)
0.404512 + 0.914533i \(0.367441\pi\)
\(480\) 0 0
\(481\) 8509.84 0.806685
\(482\) 0 0
\(483\) 2917.41 0.274838
\(484\) 0 0
\(485\) 4029.80 0.377286
\(486\) 0 0
\(487\) 10966.2 1.02038 0.510191 0.860061i \(-0.329575\pi\)
0.510191 + 0.860061i \(0.329575\pi\)
\(488\) 0 0
\(489\) 1304.38 0.120626
\(490\) 0 0
\(491\) 6784.15 0.623553 0.311777 0.950155i \(-0.399076\pi\)
0.311777 + 0.950155i \(0.399076\pi\)
\(492\) 0 0
\(493\) −8085.26 −0.738624
\(494\) 0 0
\(495\) 341.296 0.0309901
\(496\) 0 0
\(497\) −31115.8 −2.80832
\(498\) 0 0
\(499\) −17785.8 −1.59560 −0.797799 0.602924i \(-0.794002\pi\)
−0.797799 + 0.602924i \(0.794002\pi\)
\(500\) 0 0
\(501\) −2949.89 −0.263057
\(502\) 0 0
\(503\) 8440.25 0.748175 0.374087 0.927393i \(-0.377956\pi\)
0.374087 + 0.927393i \(0.377956\pi\)
\(504\) 0 0
\(505\) −1304.94 −0.114988
\(506\) 0 0
\(507\) −984.654 −0.0862525
\(508\) 0 0
\(509\) 10923.4 0.951222 0.475611 0.879656i \(-0.342227\pi\)
0.475611 + 0.879656i \(0.342227\pi\)
\(510\) 0 0
\(511\) −3358.91 −0.290782
\(512\) 0 0
\(513\) 6847.20 0.589301
\(514\) 0 0
\(515\) 8200.05 0.701626
\(516\) 0 0
\(517\) −198.882 −0.0169184
\(518\) 0 0
\(519\) 1246.90 0.105458
\(520\) 0 0
\(521\) −9879.76 −0.830787 −0.415394 0.909642i \(-0.636356\pi\)
−0.415394 + 0.909642i \(0.636356\pi\)
\(522\) 0 0
\(523\) 105.197 0.00879531 0.00439766 0.999990i \(-0.498600\pi\)
0.00439766 + 0.999990i \(0.498600\pi\)
\(524\) 0 0
\(525\) −640.408 −0.0532375
\(526\) 0 0
\(527\) −14037.4 −1.16030
\(528\) 0 0
\(529\) 803.653 0.0660519
\(530\) 0 0
\(531\) 11995.3 0.980325
\(532\) 0 0
\(533\) −8163.84 −0.663443
\(534\) 0 0
\(535\) −3395.01 −0.274353
\(536\) 0 0
\(537\) −2705.84 −0.217440
\(538\) 0 0
\(539\) −1222.17 −0.0976668
\(540\) 0 0
\(541\) 19055.6 1.51435 0.757175 0.653212i \(-0.226579\pi\)
0.757175 + 0.653212i \(0.226579\pi\)
\(542\) 0 0
\(543\) −2071.37 −0.163704
\(544\) 0 0
\(545\) −4201.10 −0.330193
\(546\) 0 0
\(547\) −3910.22 −0.305647 −0.152824 0.988253i \(-0.548837\pi\)
−0.152824 + 0.988253i \(0.548837\pi\)
\(548\) 0 0
\(549\) 12499.6 0.971712
\(550\) 0 0
\(551\) 9682.11 0.748587
\(552\) 0 0
\(553\) 24466.4 1.88141
\(554\) 0 0
\(555\) −1152.42 −0.0881395
\(556\) 0 0
\(557\) 1727.52 0.131413 0.0657067 0.997839i \(-0.479070\pi\)
0.0657067 + 0.997839i \(0.479070\pi\)
\(558\) 0 0
\(559\) −12256.5 −0.927360
\(560\) 0 0
\(561\) −280.148 −0.0210835
\(562\) 0 0
\(563\) 20905.0 1.56491 0.782453 0.622709i \(-0.213968\pi\)
0.782453 + 0.622709i \(0.213968\pi\)
\(564\) 0 0
\(565\) −8045.76 −0.599093
\(566\) 0 0
\(567\) −18926.1 −1.40180
\(568\) 0 0
\(569\) −256.523 −0.0188998 −0.00944990 0.999955i \(-0.503008\pi\)
−0.00944990 + 0.999955i \(0.503008\pi\)
\(570\) 0 0
\(571\) −15793.4 −1.15750 −0.578749 0.815506i \(-0.696459\pi\)
−0.578749 + 0.815506i \(0.696459\pi\)
\(572\) 0 0
\(573\) −149.812 −0.0109223
\(574\) 0 0
\(575\) −2847.22 −0.206500
\(576\) 0 0
\(577\) −5923.65 −0.427391 −0.213696 0.976900i \(-0.568550\pi\)
−0.213696 + 0.976900i \(0.568550\pi\)
\(578\) 0 0
\(579\) 435.708 0.0312736
\(580\) 0 0
\(581\) −16120.9 −1.15113
\(582\) 0 0
\(583\) −105.351 −0.00748405
\(584\) 0 0
\(585\) 4346.78 0.307209
\(586\) 0 0
\(587\) −11730.7 −0.824832 −0.412416 0.910996i \(-0.635315\pi\)
−0.412416 + 0.910996i \(0.635315\pi\)
\(588\) 0 0
\(589\) 16809.8 1.17596
\(590\) 0 0
\(591\) 1877.16 0.130653
\(592\) 0 0
\(593\) 2781.00 0.192584 0.0962919 0.995353i \(-0.469302\pi\)
0.0962919 + 0.995353i \(0.469302\pi\)
\(594\) 0 0
\(595\) −17036.5 −1.17383
\(596\) 0 0
\(597\) 3058.27 0.209659
\(598\) 0 0
\(599\) −22999.7 −1.56885 −0.784425 0.620224i \(-0.787042\pi\)
−0.784425 + 0.620224i \(0.787042\pi\)
\(600\) 0 0
\(601\) −2680.42 −0.181925 −0.0909624 0.995854i \(-0.528994\pi\)
−0.0909624 + 0.995854i \(0.528994\pi\)
\(602\) 0 0
\(603\) −15774.1 −1.06529
\(604\) 0 0
\(605\) −6621.04 −0.444932
\(606\) 0 0
\(607\) 16977.3 1.13523 0.567617 0.823293i \(-0.307865\pi\)
0.567617 + 0.823293i \(0.307865\pi\)
\(608\) 0 0
\(609\) 1732.08 0.115250
\(610\) 0 0
\(611\) −2532.98 −0.167714
\(612\) 0 0
\(613\) −24124.3 −1.58951 −0.794755 0.606930i \(-0.792401\pi\)
−0.794755 + 0.606930i \(0.792401\pi\)
\(614\) 0 0
\(615\) 1105.56 0.0724887
\(616\) 0 0
\(617\) 12286.0 0.801644 0.400822 0.916156i \(-0.368725\pi\)
0.400822 + 0.916156i \(0.368725\pi\)
\(618\) 0 0
\(619\) −6240.17 −0.405192 −0.202596 0.979262i \(-0.564938\pi\)
−0.202596 + 0.979262i \(0.564938\pi\)
\(620\) 0 0
\(621\) 5445.98 0.351915
\(622\) 0 0
\(623\) 17813.6 1.14557
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 335.477 0.0213679
\(628\) 0 0
\(629\) −30657.2 −1.94338
\(630\) 0 0
\(631\) −8142.22 −0.513687 −0.256844 0.966453i \(-0.582683\pi\)
−0.256844 + 0.966453i \(0.582683\pi\)
\(632\) 0 0
\(633\) 2019.32 0.126794
\(634\) 0 0
\(635\) 5748.02 0.359217
\(636\) 0 0
\(637\) −15565.6 −0.968182
\(638\) 0 0
\(639\) −28600.9 −1.77063
\(640\) 0 0
\(641\) 6380.36 0.393150 0.196575 0.980489i \(-0.437018\pi\)
0.196575 + 0.980489i \(0.437018\pi\)
\(642\) 0 0
\(643\) −18308.0 −1.12286 −0.561430 0.827524i \(-0.689749\pi\)
−0.561430 + 0.827524i \(0.689749\pi\)
\(644\) 0 0
\(645\) 1659.80 0.101325
\(646\) 0 0
\(647\) 21497.9 1.30629 0.653145 0.757233i \(-0.273449\pi\)
0.653145 + 0.757233i \(0.273449\pi\)
\(648\) 0 0
\(649\) 1193.55 0.0721895
\(650\) 0 0
\(651\) 3007.20 0.181047
\(652\) 0 0
\(653\) −16035.4 −0.960972 −0.480486 0.877002i \(-0.659540\pi\)
−0.480486 + 0.877002i \(0.659540\pi\)
\(654\) 0 0
\(655\) −12184.9 −0.726877
\(656\) 0 0
\(657\) −3087.43 −0.183337
\(658\) 0 0
\(659\) −12259.7 −0.724688 −0.362344 0.932044i \(-0.618023\pi\)
−0.362344 + 0.932044i \(0.618023\pi\)
\(660\) 0 0
\(661\) 7515.22 0.442221 0.221111 0.975249i \(-0.429032\pi\)
0.221111 + 0.975249i \(0.429032\pi\)
\(662\) 0 0
\(663\) −3567.99 −0.209003
\(664\) 0 0
\(665\) 20401.2 1.18966
\(666\) 0 0
\(667\) 7700.74 0.447037
\(668\) 0 0
\(669\) 1015.51 0.0586874
\(670\) 0 0
\(671\) 1243.73 0.0715552
\(672\) 0 0
\(673\) 17438.7 0.998829 0.499415 0.866363i \(-0.333548\pi\)
0.499415 + 0.866363i \(0.333548\pi\)
\(674\) 0 0
\(675\) −1195.46 −0.0681678
\(676\) 0 0
\(677\) 14679.1 0.833331 0.416665 0.909060i \(-0.363199\pi\)
0.416665 + 0.909060i \(0.363199\pi\)
\(678\) 0 0
\(679\) −22965.7 −1.29800
\(680\) 0 0
\(681\) 1522.77 0.0856866
\(682\) 0 0
\(683\) 30494.6 1.70841 0.854204 0.519937i \(-0.174045\pi\)
0.854204 + 0.519937i \(0.174045\pi\)
\(684\) 0 0
\(685\) −3822.33 −0.213202
\(686\) 0 0
\(687\) −4720.29 −0.262140
\(688\) 0 0
\(689\) −1341.76 −0.0741903
\(690\) 0 0
\(691\) −13887.9 −0.764576 −0.382288 0.924043i \(-0.624864\pi\)
−0.382288 + 0.924043i \(0.624864\pi\)
\(692\) 0 0
\(693\) −1945.04 −0.106617
\(694\) 0 0
\(695\) −12736.8 −0.695155
\(696\) 0 0
\(697\) 29410.7 1.59829
\(698\) 0 0
\(699\) −5432.17 −0.293939
\(700\) 0 0
\(701\) 11296.0 0.608622 0.304311 0.952573i \(-0.401574\pi\)
0.304311 + 0.952573i \(0.401574\pi\)
\(702\) 0 0
\(703\) 36712.0 1.96959
\(704\) 0 0
\(705\) 343.020 0.0183247
\(706\) 0 0
\(707\) 7436.82 0.395602
\(708\) 0 0
\(709\) −24405.6 −1.29277 −0.646384 0.763013i \(-0.723719\pi\)
−0.646384 + 0.763013i \(0.723719\pi\)
\(710\) 0 0
\(711\) 22489.0 1.18622
\(712\) 0 0
\(713\) 13369.8 0.702251
\(714\) 0 0
\(715\) 432.510 0.0226223
\(716\) 0 0
\(717\) 346.481 0.0180468
\(718\) 0 0
\(719\) 11883.4 0.616379 0.308189 0.951325i \(-0.400277\pi\)
0.308189 + 0.951325i \(0.400277\pi\)
\(720\) 0 0
\(721\) −46731.9 −2.41385
\(722\) 0 0
\(723\) 4367.90 0.224680
\(724\) 0 0
\(725\) −1690.41 −0.0865934
\(726\) 0 0
\(727\) −21154.5 −1.07920 −0.539599 0.841922i \(-0.681424\pi\)
−0.539599 + 0.841922i \(0.681424\pi\)
\(728\) 0 0
\(729\) −16235.7 −0.824861
\(730\) 0 0
\(731\) 44154.7 2.23409
\(732\) 0 0
\(733\) −5806.54 −0.292591 −0.146296 0.989241i \(-0.546735\pi\)
−0.146296 + 0.989241i \(0.546735\pi\)
\(734\) 0 0
\(735\) 2107.92 0.105785
\(736\) 0 0
\(737\) −1569.54 −0.0784462
\(738\) 0 0
\(739\) 14389.0 0.716248 0.358124 0.933674i \(-0.383416\pi\)
0.358124 + 0.933674i \(0.383416\pi\)
\(740\) 0 0
\(741\) 4272.67 0.211822
\(742\) 0 0
\(743\) 18366.0 0.906839 0.453420 0.891297i \(-0.350204\pi\)
0.453420 + 0.891297i \(0.350204\pi\)
\(744\) 0 0
\(745\) 12828.8 0.630886
\(746\) 0 0
\(747\) −14818.0 −0.725785
\(748\) 0 0
\(749\) 19348.1 0.943876
\(750\) 0 0
\(751\) −19355.0 −0.940444 −0.470222 0.882548i \(-0.655826\pi\)
−0.470222 + 0.882548i \(0.655826\pi\)
\(752\) 0 0
\(753\) −3402.41 −0.164662
\(754\) 0 0
\(755\) 2624.74 0.126522
\(756\) 0 0
\(757\) −494.408 −0.0237379 −0.0118689 0.999930i \(-0.503778\pi\)
−0.0118689 + 0.999930i \(0.503778\pi\)
\(758\) 0 0
\(759\) 266.824 0.0127604
\(760\) 0 0
\(761\) −2310.20 −0.110045 −0.0550227 0.998485i \(-0.517523\pi\)
−0.0550227 + 0.998485i \(0.517523\pi\)
\(762\) 0 0
\(763\) 23942.0 1.13599
\(764\) 0 0
\(765\) −15659.5 −0.740093
\(766\) 0 0
\(767\) 15201.2 0.715623
\(768\) 0 0
\(769\) 24590.9 1.15315 0.576573 0.817045i \(-0.304389\pi\)
0.576573 + 0.817045i \(0.304389\pi\)
\(770\) 0 0
\(771\) 3328.34 0.155470
\(772\) 0 0
\(773\) −22102.6 −1.02843 −0.514214 0.857662i \(-0.671916\pi\)
−0.514214 + 0.857662i \(0.671916\pi\)
\(774\) 0 0
\(775\) −2934.85 −0.136029
\(776\) 0 0
\(777\) 6567.61 0.303232
\(778\) 0 0
\(779\) −35219.3 −1.61985
\(780\) 0 0
\(781\) −2845.83 −0.130386
\(782\) 0 0
\(783\) 3233.30 0.147572
\(784\) 0 0
\(785\) −17848.0 −0.811492
\(786\) 0 0
\(787\) 29715.0 1.34590 0.672952 0.739686i \(-0.265026\pi\)
0.672952 + 0.739686i \(0.265026\pi\)
\(788\) 0 0
\(789\) −3162.40 −0.142693
\(790\) 0 0
\(791\) 45852.6 2.06110
\(792\) 0 0
\(793\) 15840.2 0.709335
\(794\) 0 0
\(795\) 181.704 0.00810613
\(796\) 0 0
\(797\) −1237.06 −0.0549799 −0.0274899 0.999622i \(-0.508751\pi\)
−0.0274899 + 0.999622i \(0.508751\pi\)
\(798\) 0 0
\(799\) 9125.20 0.404038
\(800\) 0 0
\(801\) 16373.9 0.722274
\(802\) 0 0
\(803\) −307.203 −0.0135006
\(804\) 0 0
\(805\) 16226.2 0.710435
\(806\) 0 0
\(807\) −5002.00 −0.218189
\(808\) 0 0
\(809\) −4675.39 −0.203186 −0.101593 0.994826i \(-0.532394\pi\)
−0.101593 + 0.994826i \(0.532394\pi\)
\(810\) 0 0
\(811\) −3243.36 −0.140431 −0.0702156 0.997532i \(-0.522369\pi\)
−0.0702156 + 0.997532i \(0.522369\pi\)
\(812\) 0 0
\(813\) −2324.21 −0.100263
\(814\) 0 0
\(815\) 7254.80 0.311809
\(816\) 0 0
\(817\) −52875.3 −2.26423
\(818\) 0 0
\(819\) −24772.2 −1.05691
\(820\) 0 0
\(821\) 33551.4 1.42625 0.713126 0.701036i \(-0.247279\pi\)
0.713126 + 0.701036i \(0.247279\pi\)
\(822\) 0 0
\(823\) 6365.66 0.269615 0.134807 0.990872i \(-0.456958\pi\)
0.134807 + 0.990872i \(0.456958\pi\)
\(824\) 0 0
\(825\) −58.5713 −0.00247175
\(826\) 0 0
\(827\) −18980.7 −0.798094 −0.399047 0.916930i \(-0.630659\pi\)
−0.399047 + 0.916930i \(0.630659\pi\)
\(828\) 0 0
\(829\) 33674.2 1.41080 0.705400 0.708809i \(-0.250767\pi\)
0.705400 + 0.708809i \(0.250767\pi\)
\(830\) 0 0
\(831\) −795.087 −0.0331904
\(832\) 0 0
\(833\) 56076.0 2.33244
\(834\) 0 0
\(835\) −16406.9 −0.679981
\(836\) 0 0
\(837\) 5613.58 0.231821
\(838\) 0 0
\(839\) −4639.47 −0.190909 −0.0954544 0.995434i \(-0.530430\pi\)
−0.0954544 + 0.995434i \(0.530430\pi\)
\(840\) 0 0
\(841\) −19817.0 −0.812540
\(842\) 0 0
\(843\) 2845.77 0.116267
\(844\) 0 0
\(845\) −5476.51 −0.222956
\(846\) 0 0
\(847\) 37733.2 1.53073
\(848\) 0 0
\(849\) −3978.34 −0.160820
\(850\) 0 0
\(851\) 29199.2 1.17619
\(852\) 0 0
\(853\) −1646.37 −0.0660850 −0.0330425 0.999454i \(-0.510520\pi\)
−0.0330425 + 0.999454i \(0.510520\pi\)
\(854\) 0 0
\(855\) 18752.3 0.750076
\(856\) 0 0
\(857\) −46767.8 −1.86413 −0.932064 0.362295i \(-0.881993\pi\)
−0.932064 + 0.362295i \(0.881993\pi\)
\(858\) 0 0
\(859\) 11466.7 0.455460 0.227730 0.973724i \(-0.426870\pi\)
0.227730 + 0.973724i \(0.426870\pi\)
\(860\) 0 0
\(861\) −6300.57 −0.249388
\(862\) 0 0
\(863\) −42704.1 −1.68443 −0.842216 0.539140i \(-0.818750\pi\)
−0.842216 + 0.539140i \(0.818750\pi\)
\(864\) 0 0
\(865\) 6935.06 0.272600
\(866\) 0 0
\(867\) 8437.19 0.330498
\(868\) 0 0
\(869\) 2237.68 0.0873511
\(870\) 0 0
\(871\) −19989.9 −0.777647
\(872\) 0 0
\(873\) −21109.6 −0.818385
\(874\) 0 0
\(875\) −3561.86 −0.137615
\(876\) 0 0
\(877\) −18376.9 −0.707574 −0.353787 0.935326i \(-0.615106\pi\)
−0.353787 + 0.935326i \(0.615106\pi\)
\(878\) 0 0
\(879\) 2581.60 0.0990616
\(880\) 0 0
\(881\) −7024.26 −0.268619 −0.134310 0.990939i \(-0.542882\pi\)
−0.134310 + 0.990939i \(0.542882\pi\)
\(882\) 0 0
\(883\) 41747.1 1.59106 0.795528 0.605917i \(-0.207194\pi\)
0.795528 + 0.605917i \(0.207194\pi\)
\(884\) 0 0
\(885\) −2058.57 −0.0781900
\(886\) 0 0
\(887\) 5863.18 0.221946 0.110973 0.993823i \(-0.464603\pi\)
0.110973 + 0.993823i \(0.464603\pi\)
\(888\) 0 0
\(889\) −32757.8 −1.23584
\(890\) 0 0
\(891\) −1730.97 −0.0650836
\(892\) 0 0
\(893\) −10927.4 −0.409488
\(894\) 0 0
\(895\) −15049.5 −0.562066
\(896\) 0 0
\(897\) 3398.30 0.126495
\(898\) 0 0
\(899\) 7937.74 0.294481
\(900\) 0 0
\(901\) 4833.78 0.178731
\(902\) 0 0
\(903\) −9459.14 −0.348594
\(904\) 0 0
\(905\) −11520.7 −0.423161
\(906\) 0 0
\(907\) 13945.6 0.510536 0.255268 0.966870i \(-0.417836\pi\)
0.255268 + 0.966870i \(0.417836\pi\)
\(908\) 0 0
\(909\) 6835.75 0.249425
\(910\) 0 0
\(911\) −38202.8 −1.38937 −0.694685 0.719314i \(-0.744456\pi\)
−0.694685 + 0.719314i \(0.744456\pi\)
\(912\) 0 0
\(913\) −1474.41 −0.0534456
\(914\) 0 0
\(915\) −2145.11 −0.0775030
\(916\) 0 0
\(917\) 69441.7 2.50073
\(918\) 0 0
\(919\) 8586.98 0.308225 0.154112 0.988053i \(-0.450748\pi\)
0.154112 + 0.988053i \(0.450748\pi\)
\(920\) 0 0
\(921\) −2827.70 −0.101168
\(922\) 0 0
\(923\) −36244.7 −1.29254
\(924\) 0 0
\(925\) −6409.59 −0.227834
\(926\) 0 0
\(927\) −42954.9 −1.52192
\(928\) 0 0
\(929\) 50645.2 1.78861 0.894303 0.447461i \(-0.147672\pi\)
0.894303 + 0.447461i \(0.147672\pi\)
\(930\) 0 0
\(931\) −67151.1 −2.36390
\(932\) 0 0
\(933\) −275.640 −0.00967208
\(934\) 0 0
\(935\) −1558.14 −0.0544992
\(936\) 0 0
\(937\) 26068.7 0.908887 0.454444 0.890775i \(-0.349838\pi\)
0.454444 + 0.890775i \(0.349838\pi\)
\(938\) 0 0
\(939\) −2805.41 −0.0974985
\(940\) 0 0
\(941\) −4036.78 −0.139846 −0.0699230 0.997552i \(-0.522275\pi\)
−0.0699230 + 0.997552i \(0.522275\pi\)
\(942\) 0 0
\(943\) −28012.0 −0.967334
\(944\) 0 0
\(945\) 6812.90 0.234522
\(946\) 0 0
\(947\) −47790.1 −1.63988 −0.819942 0.572446i \(-0.805995\pi\)
−0.819942 + 0.572446i \(0.805995\pi\)
\(948\) 0 0
\(949\) −3912.57 −0.133833
\(950\) 0 0
\(951\) −7309.71 −0.249247
\(952\) 0 0
\(953\) −49284.8 −1.67523 −0.837613 0.546264i \(-0.816050\pi\)
−0.837613 + 0.546264i \(0.816050\pi\)
\(954\) 0 0
\(955\) −833.235 −0.0282333
\(956\) 0 0
\(957\) 158.415 0.00535092
\(958\) 0 0
\(959\) 21783.4 0.733495
\(960\) 0 0
\(961\) −16009.7 −0.537400
\(962\) 0 0
\(963\) 17784.3 0.595110
\(964\) 0 0
\(965\) 2423.35 0.0808397
\(966\) 0 0
\(967\) −19830.2 −0.659459 −0.329729 0.944076i \(-0.606957\pi\)
−0.329729 + 0.944076i \(0.606957\pi\)
\(968\) 0 0
\(969\) −15392.5 −0.510299
\(970\) 0 0
\(971\) 24538.6 0.811000 0.405500 0.914095i \(-0.367097\pi\)
0.405500 + 0.914095i \(0.367097\pi\)
\(972\) 0 0
\(973\) 72586.5 2.39159
\(974\) 0 0
\(975\) −745.969 −0.0245027
\(976\) 0 0
\(977\) −15113.6 −0.494909 −0.247454 0.968900i \(-0.579594\pi\)
−0.247454 + 0.968900i \(0.579594\pi\)
\(978\) 0 0
\(979\) 1629.22 0.0531870
\(980\) 0 0
\(981\) 22006.9 0.716235
\(982\) 0 0
\(983\) 13262.7 0.430330 0.215165 0.976578i \(-0.430971\pi\)
0.215165 + 0.976578i \(0.430971\pi\)
\(984\) 0 0
\(985\) 10440.5 0.337728
\(986\) 0 0
\(987\) −1954.87 −0.0630436
\(988\) 0 0
\(989\) −42054.8 −1.35214
\(990\) 0 0
\(991\) −7053.73 −0.226104 −0.113052 0.993589i \(-0.536063\pi\)
−0.113052 + 0.993589i \(0.536063\pi\)
\(992\) 0 0
\(993\) −7081.98 −0.226324
\(994\) 0 0
\(995\) 17009.7 0.541953
\(996\) 0 0
\(997\) 38686.1 1.22889 0.614443 0.788961i \(-0.289381\pi\)
0.614443 + 0.788961i \(0.289381\pi\)
\(998\) 0 0
\(999\) 12259.8 0.388273
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.4.a.c.1.2 2
3.2 odd 2 1440.4.a.t.1.1 2
4.3 odd 2 160.4.a.g.1.1 yes 2
5.2 odd 4 800.4.c.i.449.2 4
5.3 odd 4 800.4.c.i.449.3 4
5.4 even 2 800.4.a.s.1.1 2
8.3 odd 2 320.4.a.o.1.2 2
8.5 even 2 320.4.a.s.1.1 2
12.11 even 2 1440.4.a.x.1.2 2
16.3 odd 4 1280.4.d.q.641.2 4
16.5 even 4 1280.4.d.x.641.2 4
16.11 odd 4 1280.4.d.q.641.3 4
16.13 even 4 1280.4.d.x.641.3 4
20.3 even 4 800.4.c.k.449.2 4
20.7 even 4 800.4.c.k.449.3 4
20.19 odd 2 800.4.a.m.1.2 2
40.19 odd 2 1600.4.a.cn.1.1 2
40.29 even 2 1600.4.a.cd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.a.c.1.2 2 1.1 even 1 trivial
160.4.a.g.1.1 yes 2 4.3 odd 2
320.4.a.o.1.2 2 8.3 odd 2
320.4.a.s.1.1 2 8.5 even 2
800.4.a.m.1.2 2 20.19 odd 2
800.4.a.s.1.1 2 5.4 even 2
800.4.c.i.449.2 4 5.2 odd 4
800.4.c.i.449.3 4 5.3 odd 4
800.4.c.k.449.2 4 20.3 even 4
800.4.c.k.449.3 4 20.7 even 4
1280.4.d.q.641.2 4 16.3 odd 4
1280.4.d.q.641.3 4 16.11 odd 4
1280.4.d.x.641.2 4 16.5 even 4
1280.4.d.x.641.3 4 16.13 even 4
1440.4.a.t.1.1 2 3.2 odd 2
1440.4.a.x.1.2 2 12.11 even 2
1600.4.a.cd.1.2 2 40.29 even 2
1600.4.a.cn.1.1 2 40.19 odd 2