Properties

Label 160.4.a.c
Level $160$
Weight $4$
Character orbit 160.a
Self dual yes
Analytic conductor $9.440$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(1,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.44030560092\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 4) q^{3} + 5 q^{5} + ( - 5 \beta - 4) q^{7} + ( - 8 \beta + 13) q^{9} + (6 \beta - 32) q^{11} + ( - 8 \beta + 6) q^{13} + (5 \beta - 20) q^{15} + (24 \beta + 2) q^{17} + ( - 8 \beta - 104) q^{19}+ \cdots + (334 \beta - 1568) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{3} + 10 q^{5} - 8 q^{7} + 26 q^{9} - 64 q^{11} + 12 q^{13} - 40 q^{15} + 4 q^{17} - 208 q^{19} - 208 q^{21} - 120 q^{23} + 50 q^{25} - 272 q^{27} - 292 q^{29} - 176 q^{31} + 544 q^{33} - 40 q^{35}+ \cdots - 3136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
0 −8.89898 0 5.00000 0 20.4949 0 52.1918 0
1.2 0 0.898979 0 5.00000 0 −28.4949 0 −26.1918 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.4.a.c 2
3.b odd 2 1 1440.4.a.t 2
4.b odd 2 1 160.4.a.g yes 2
5.b even 2 1 800.4.a.s 2
5.c odd 4 2 800.4.c.i 4
8.b even 2 1 320.4.a.s 2
8.d odd 2 1 320.4.a.o 2
12.b even 2 1 1440.4.a.x 2
16.e even 4 2 1280.4.d.x 4
16.f odd 4 2 1280.4.d.q 4
20.d odd 2 1 800.4.a.m 2
20.e even 4 2 800.4.c.k 4
40.e odd 2 1 1600.4.a.cn 2
40.f even 2 1 1600.4.a.cd 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.4.a.c 2 1.a even 1 1 trivial
160.4.a.g yes 2 4.b odd 2 1
320.4.a.o 2 8.d odd 2 1
320.4.a.s 2 8.b even 2 1
800.4.a.m 2 20.d odd 2 1
800.4.a.s 2 5.b even 2 1
800.4.c.i 4 5.c odd 4 2
800.4.c.k 4 20.e even 4 2
1280.4.d.q 4 16.f odd 4 2
1280.4.d.x 4 16.e even 4 2
1440.4.a.t 2 3.b odd 2 1
1440.4.a.x 2 12.b even 2 1
1600.4.a.cd 2 40.f even 2 1
1600.4.a.cn 2 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 8T_{3} - 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(160))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 8T - 8 \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 8T - 584 \) Copy content Toggle raw display
$11$ \( T^{2} + 64T + 160 \) Copy content Toggle raw display
$13$ \( T^{2} - 12T - 1500 \) Copy content Toggle raw display
$17$ \( T^{2} - 4T - 13820 \) Copy content Toggle raw display
$19$ \( T^{2} + 208T + 9280 \) Copy content Toggle raw display
$23$ \( T^{2} + 120T + 696 \) Copy content Toggle raw display
$29$ \( T^{2} + 292T + 15172 \) Copy content Toggle raw display
$31$ \( T^{2} + 176T + 6880 \) Copy content Toggle raw display
$37$ \( T^{2} + 356T + 25540 \) Copy content Toggle raw display
$41$ \( T^{2} - 100T - 35900 \) Copy content Toggle raw display
$43$ \( T^{2} - 376T + 2488 \) Copy content Toggle raw display
$47$ \( T^{2} - 280T + 15544 \) Copy content Toggle raw display
$53$ \( T^{2} - 316T + 11140 \) Copy content Toggle raw display
$59$ \( T^{2} + 720T + 120000 \) Copy content Toggle raw display
$61$ \( T^{2} + 1268 T + 377380 \) Copy content Toggle raw display
$67$ \( T^{2} - 744T + 85368 \) Copy content Toggle raw display
$71$ \( T^{2} - 48T - 1140000 \) Copy content Toggle raw display
$73$ \( T^{2} + 940T - 124700 \) Copy content Toggle raw display
$79$ \( T^{2} + 32T - 709760 \) Copy content Toggle raw display
$83$ \( T^{2} - 1592 T + 580600 \) Copy content Toggle raw display
$89$ \( T^{2} + 780T + 96804 \) Copy content Toggle raw display
$97$ \( T^{2} - 1220 T + 333700 \) Copy content Toggle raw display
show more
show less