Properties

Label 160.4
Level 160
Weight 4
Dimension 1158
Nonzero newspaces 10
Newform subspaces 24
Sturm bound 6144
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 24 \)
Sturm bound: \(6144\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(160))\).

Total New Old
Modular forms 2432 1218 1214
Cusp forms 2176 1158 1018
Eisenstein series 256 60 196

Trace form

\( 1158 q - 8 q^{2} - 4 q^{3} - 8 q^{4} - 14 q^{5} - 24 q^{6} - 36 q^{7} - 8 q^{8} - 106 q^{9} - 132 q^{10} - 16 q^{11} + 88 q^{12} + 228 q^{13} + 408 q^{14} + 100 q^{15} + 576 q^{16} + 356 q^{17} + 352 q^{18}+ \cdots + 10832 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(160))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
160.4.a \(\chi_{160}(1, \cdot)\) 160.4.a.a 1 1
160.4.a.b 1
160.4.a.c 2
160.4.a.d 2
160.4.a.e 2
160.4.a.f 2
160.4.a.g 2
160.4.c \(\chi_{160}(129, \cdot)\) 160.4.c.a 2 1
160.4.c.b 4
160.4.c.c 4
160.4.c.d 8
160.4.d \(\chi_{160}(81, \cdot)\) 160.4.d.a 12 1
160.4.f \(\chi_{160}(49, \cdot)\) 160.4.f.a 16 1
160.4.j \(\chi_{160}(87, \cdot)\) None 0 2
160.4.l \(\chi_{160}(41, \cdot)\) None 0 2
160.4.n \(\chi_{160}(63, \cdot)\) 160.4.n.a 2 2
160.4.n.b 2
160.4.n.c 8
160.4.n.d 8
160.4.n.e 8
160.4.n.f 8
160.4.o \(\chi_{160}(47, \cdot)\) 160.4.o.a 32 2
160.4.q \(\chi_{160}(9, \cdot)\) None 0 2
160.4.s \(\chi_{160}(7, \cdot)\) None 0 2
160.4.u \(\chi_{160}(43, \cdot)\) 160.4.u.a 280 4
160.4.x \(\chi_{160}(21, \cdot)\) 160.4.x.a 192 4
160.4.z \(\chi_{160}(29, \cdot)\) 160.4.z.a 280 4
160.4.ba \(\chi_{160}(3, \cdot)\) 160.4.ba.a 280 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(160))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(160)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 1}\)