Defining parameters
Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 160.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(160, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 12 | 44 |
Cusp forms | 40 | 12 | 28 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(160, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
160.3.h.a | $6$ | $4.360$ | 6.0.1827904.1 | None | \(0\) | \(-4\) | \(-2\) | \(-12\) | \(q+(-1-\beta _{1})q^{3}-\beta _{4}q^{5}+(-2-\beta _{3}+\cdots)q^{7}+\cdots\) |
160.3.h.b | $6$ | $4.360$ | 6.0.1827904.1 | None | \(0\) | \(4\) | \(-2\) | \(12\) | \(q+(1+\beta _{1})q^{3}+(-1-\beta _{1}+\beta _{4})q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(160, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(160, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)