Properties

Label 160.2.f.a
Level $160$
Weight $2$
Character orbit 160.f
Analytic conductor $1.278$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,2,Mod(49,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 160.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.27760643234\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + ( - \beta_{2} - \beta_1) q^{5} + \beta_{3} q^{7} - q^{9} - 2 \beta_{2} q^{11} + ( - \beta_{3} + 2) q^{15} + 2 \beta_{3} q^{17} + 2 \beta_{2} q^{19} + 2 \beta_{2} q^{21} - \beta_{3} q^{23}+ \cdots + 2 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 8 q^{15} - 4 q^{25} - 16 q^{31} + 4 q^{49} - 24 q^{55} + 48 q^{71} + 16 q^{79} - 20 q^{81} + 24 q^{89} + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 4\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
−0.707107 1.22474i
−0.707107 + 1.22474i
0.707107 + 1.22474i
0.707107 1.22474i
0 −1.41421 0 −1.41421 1.73205i 0 2.44949i 0 −1.00000 0
49.2 0 −1.41421 0 −1.41421 + 1.73205i 0 2.44949i 0 −1.00000 0
49.3 0 1.41421 0 1.41421 1.73205i 0 2.44949i 0 −1.00000 0
49.4 0 1.41421 0 1.41421 + 1.73205i 0 2.44949i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.2.f.a 4
3.b odd 2 1 1440.2.d.c 4
4.b odd 2 1 40.2.f.a 4
5.b even 2 1 inner 160.2.f.a 4
5.c odd 4 2 800.2.d.f 4
8.b even 2 1 inner 160.2.f.a 4
8.d odd 2 1 40.2.f.a 4
12.b even 2 1 360.2.d.b 4
15.d odd 2 1 1440.2.d.c 4
15.e even 4 2 7200.2.k.l 4
16.e even 4 2 1280.2.c.k 4
16.f odd 4 2 1280.2.c.i 4
20.d odd 2 1 40.2.f.a 4
20.e even 4 2 200.2.d.e 4
24.f even 2 1 360.2.d.b 4
24.h odd 2 1 1440.2.d.c 4
40.e odd 2 1 40.2.f.a 4
40.f even 2 1 inner 160.2.f.a 4
40.i odd 4 2 800.2.d.f 4
40.k even 4 2 200.2.d.e 4
60.h even 2 1 360.2.d.b 4
60.l odd 4 2 1800.2.k.m 4
80.i odd 4 2 6400.2.a.cm 4
80.j even 4 2 6400.2.a.co 4
80.k odd 4 2 1280.2.c.i 4
80.q even 4 2 1280.2.c.k 4
80.s even 4 2 6400.2.a.co 4
80.t odd 4 2 6400.2.a.cm 4
120.i odd 2 1 1440.2.d.c 4
120.m even 2 1 360.2.d.b 4
120.q odd 4 2 1800.2.k.m 4
120.w even 4 2 7200.2.k.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.2.f.a 4 4.b odd 2 1
40.2.f.a 4 8.d odd 2 1
40.2.f.a 4 20.d odd 2 1
40.2.f.a 4 40.e odd 2 1
160.2.f.a 4 1.a even 1 1 trivial
160.2.f.a 4 5.b even 2 1 inner
160.2.f.a 4 8.b even 2 1 inner
160.2.f.a 4 40.f even 2 1 inner
200.2.d.e 4 20.e even 4 2
200.2.d.e 4 40.k even 4 2
360.2.d.b 4 12.b even 2 1
360.2.d.b 4 24.f even 2 1
360.2.d.b 4 60.h even 2 1
360.2.d.b 4 120.m even 2 1
800.2.d.f 4 5.c odd 4 2
800.2.d.f 4 40.i odd 4 2
1280.2.c.i 4 16.f odd 4 2
1280.2.c.i 4 80.k odd 4 2
1280.2.c.k 4 16.e even 4 2
1280.2.c.k 4 80.q even 4 2
1440.2.d.c 4 3.b odd 2 1
1440.2.d.c 4 15.d odd 2 1
1440.2.d.c 4 24.h odd 2 1
1440.2.d.c 4 120.i odd 2 1
1800.2.k.m 4 60.l odd 4 2
1800.2.k.m 4 120.q odd 4 2
6400.2.a.cm 4 80.i odd 4 2
6400.2.a.cm 4 80.t odd 4 2
6400.2.a.co 4 80.j even 4 2
6400.2.a.co 4 80.s even 4 2
7200.2.k.l 4 15.e even 4 2
7200.2.k.l 4 120.w even 4 2

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(160, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 2T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T + 4)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 108)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$71$ \( (T - 12)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$79$ \( (T - 4)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 98)^{2} \) Copy content Toggle raw display
$89$ \( (T - 6)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
show more
show less