Properties

Label 160.2.d
Level $160$
Weight $2$
Character orbit 160.d
Rep. character $\chi_{160}(81,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(160, [\chi])\).

Total New Old
Modular forms 32 4 28
Cusp forms 16 4 12
Eisenstein series 16 0 16

Trace form

\( 4 q + 4 q^{7} - 4 q^{9} - 4 q^{15} + 4 q^{23} - 4 q^{25} + 8 q^{31} + 8 q^{33} - 24 q^{39} - 8 q^{41} - 20 q^{47} - 12 q^{49} + 8 q^{55} + 8 q^{57} + 20 q^{63} - 8 q^{71} + 16 q^{73} + 32 q^{79} + 4 q^{81}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(160, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
160.2.d.a 160.d 8.b $4$ $1.278$ \(\Q(\zeta_{12})\) None 40.2.d.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{3}+\beta_1 q^{5}+(\beta_{3}+1)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(160, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(160, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 3}\)