# Properties

 Label 160.2.a.a Level $160$ Weight $2$ Character orbit 160.a Self dual yes Analytic conductor $1.278$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [160,2,Mod(1,160)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(160, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("160.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$160 = 2^{5} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 160.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$1.27760643234$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{3} - q^{5} - 2 q^{7} + q^{9}+O(q^{10})$$ q - 2 * q^3 - q^5 - 2 * q^7 + q^9 $$q - 2 q^{3} - q^{5} - 2 q^{7} + q^{9} - 4 q^{11} - 6 q^{13} + 2 q^{15} + 2 q^{17} + 8 q^{19} + 4 q^{21} - 6 q^{23} + q^{25} + 4 q^{27} - 2 q^{29} + 4 q^{31} + 8 q^{33} + 2 q^{35} + 2 q^{37} + 12 q^{39} - 10 q^{41} - 2 q^{43} - q^{45} - 2 q^{47} - 3 q^{49} - 4 q^{51} + 2 q^{53} + 4 q^{55} - 16 q^{57} + 2 q^{61} - 2 q^{63} + 6 q^{65} - 6 q^{67} + 12 q^{69} - 12 q^{71} + 10 q^{73} - 2 q^{75} + 8 q^{77} - 8 q^{79} - 11 q^{81} - 10 q^{83} - 2 q^{85} + 4 q^{87} - 6 q^{89} + 12 q^{91} - 8 q^{93} - 8 q^{95} + 10 q^{97} - 4 q^{99}+O(q^{100})$$ q - 2 * q^3 - q^5 - 2 * q^7 + q^9 - 4 * q^11 - 6 * q^13 + 2 * q^15 + 2 * q^17 + 8 * q^19 + 4 * q^21 - 6 * q^23 + q^25 + 4 * q^27 - 2 * q^29 + 4 * q^31 + 8 * q^33 + 2 * q^35 + 2 * q^37 + 12 * q^39 - 10 * q^41 - 2 * q^43 - q^45 - 2 * q^47 - 3 * q^49 - 4 * q^51 + 2 * q^53 + 4 * q^55 - 16 * q^57 + 2 * q^61 - 2 * q^63 + 6 * q^65 - 6 * q^67 + 12 * q^69 - 12 * q^71 + 10 * q^73 - 2 * q^75 + 8 * q^77 - 8 * q^79 - 11 * q^81 - 10 * q^83 - 2 * q^85 + 4 * q^87 - 6 * q^89 + 12 * q^91 - 8 * q^93 - 8 * q^95 + 10 * q^97 - 4 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −2.00000 0 −1.00000 0 −2.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$5$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.2.a.a 1
3.b odd 2 1 1440.2.a.i 1
4.b odd 2 1 160.2.a.b yes 1
5.b even 2 1 800.2.a.i 1
5.c odd 4 2 800.2.c.a 2
7.b odd 2 1 7840.2.a.w 1
8.b even 2 1 320.2.a.e 1
8.d odd 2 1 320.2.a.b 1
12.b even 2 1 1440.2.a.l 1
15.d odd 2 1 7200.2.a.bp 1
15.e even 4 2 7200.2.f.w 2
16.e even 4 2 1280.2.d.h 2
16.f odd 4 2 1280.2.d.b 2
20.d odd 2 1 800.2.a.a 1
20.e even 4 2 800.2.c.b 2
24.f even 2 1 2880.2.a.o 1
24.h odd 2 1 2880.2.a.d 1
28.d even 2 1 7840.2.a.e 1
40.e odd 2 1 1600.2.a.t 1
40.f even 2 1 1600.2.a.e 1
40.i odd 4 2 1600.2.c.f 2
40.k even 4 2 1600.2.c.c 2
60.h even 2 1 7200.2.a.l 1
60.l odd 4 2 7200.2.f.g 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.2.a.a 1 1.a even 1 1 trivial
160.2.a.b yes 1 4.b odd 2 1
320.2.a.b 1 8.d odd 2 1
320.2.a.e 1 8.b even 2 1
800.2.a.a 1 20.d odd 2 1
800.2.a.i 1 5.b even 2 1
800.2.c.a 2 5.c odd 4 2
800.2.c.b 2 20.e even 4 2
1280.2.d.b 2 16.f odd 4 2
1280.2.d.h 2 16.e even 4 2
1440.2.a.i 1 3.b odd 2 1
1440.2.a.l 1 12.b even 2 1
1600.2.a.e 1 40.f even 2 1
1600.2.a.t 1 40.e odd 2 1
1600.2.c.c 2 40.k even 4 2
1600.2.c.f 2 40.i odd 4 2
2880.2.a.d 1 24.h odd 2 1
2880.2.a.o 1 24.f even 2 1
7200.2.a.l 1 60.h even 2 1
7200.2.a.bp 1 15.d odd 2 1
7200.2.f.g 2 60.l odd 4 2
7200.2.f.w 2 15.e even 4 2
7840.2.a.e 1 28.d even 2 1
7840.2.a.w 1 7.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3} + 2$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(160))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 2$$
$5$ $$T + 1$$
$7$ $$T + 2$$
$11$ $$T + 4$$
$13$ $$T + 6$$
$17$ $$T - 2$$
$19$ $$T - 8$$
$23$ $$T + 6$$
$29$ $$T + 2$$
$31$ $$T - 4$$
$37$ $$T - 2$$
$41$ $$T + 10$$
$43$ $$T + 2$$
$47$ $$T + 2$$
$53$ $$T - 2$$
$59$ $$T$$
$61$ $$T - 2$$
$67$ $$T + 6$$
$71$ $$T + 12$$
$73$ $$T - 10$$
$79$ $$T + 8$$
$83$ $$T + 10$$
$89$ $$T + 6$$
$97$ $$T - 10$$