Properties

Label 16.8.a.b
Level 16
Weight 8
Character orbit 16.a
Self dual yes
Analytic conductor 4.998
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 8 \)
Character orbit: \([\chi]\) = 16.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.99816040775\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 12q^{3} - 210q^{5} - 1016q^{7} - 2043q^{9} + O(q^{10}) \) \( q - 12q^{3} - 210q^{5} - 1016q^{7} - 2043q^{9} - 1092q^{11} + 1382q^{13} + 2520q^{15} + 14706q^{17} + 39940q^{19} + 12192q^{21} - 68712q^{23} - 34025q^{25} + 50760q^{27} - 102570q^{29} - 227552q^{31} + 13104q^{33} + 213360q^{35} + 160526q^{37} - 16584q^{39} + 10842q^{41} + 630748q^{43} + 429030q^{45} - 472656q^{47} + 208713q^{49} - 176472q^{51} - 1494018q^{53} + 229320q^{55} - 479280q^{57} - 2640660q^{59} + 827702q^{61} + 2075688q^{63} - 290220q^{65} + 126004q^{67} + 824544q^{69} + 1414728q^{71} + 980282q^{73} + 408300q^{75} + 1109472q^{77} + 3566800q^{79} + 3858921q^{81} - 5672892q^{83} - 3088260q^{85} + 1230840q^{87} - 11951190q^{89} - 1404112q^{91} + 2730624q^{93} - 8387400q^{95} + 8682146q^{97} + 2230956q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −12.0000 0 −210.000 0 −1016.00 0 −2043.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 16.8.a.b 1
3.b odd 2 1 144.8.a.i 1
4.b odd 2 1 2.8.a.a 1
5.b even 2 1 400.8.a.l 1
5.c odd 4 2 400.8.c.j 2
8.b even 2 1 64.8.a.e 1
8.d odd 2 1 64.8.a.c 1
12.b even 2 1 18.8.a.b 1
16.e even 4 2 256.8.b.f 2
16.f odd 4 2 256.8.b.b 2
20.d odd 2 1 50.8.a.g 1
20.e even 4 2 50.8.b.c 2
24.f even 2 1 576.8.a.g 1
24.h odd 2 1 576.8.a.f 1
28.d even 2 1 98.8.a.a 1
28.f even 6 2 98.8.c.e 2
28.g odd 6 2 98.8.c.d 2
36.f odd 6 2 162.8.c.l 2
36.h even 6 2 162.8.c.a 2
44.c even 2 1 242.8.a.e 1
52.b odd 2 1 338.8.a.d 1
52.f even 4 2 338.8.b.d 2
60.h even 2 1 450.8.a.c 1
60.l odd 4 2 450.8.c.g 2
68.d odd 2 1 578.8.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.8.a.a 1 4.b odd 2 1
16.8.a.b 1 1.a even 1 1 trivial
18.8.a.b 1 12.b even 2 1
50.8.a.g 1 20.d odd 2 1
50.8.b.c 2 20.e even 4 2
64.8.a.c 1 8.d odd 2 1
64.8.a.e 1 8.b even 2 1
98.8.a.a 1 28.d even 2 1
98.8.c.d 2 28.g odd 6 2
98.8.c.e 2 28.f even 6 2
144.8.a.i 1 3.b odd 2 1
162.8.c.a 2 36.h even 6 2
162.8.c.l 2 36.f odd 6 2
242.8.a.e 1 44.c even 2 1
256.8.b.b 2 16.f odd 4 2
256.8.b.f 2 16.e even 4 2
338.8.a.d 1 52.b odd 2 1
338.8.b.d 2 52.f even 4 2
400.8.a.l 1 5.b even 2 1
400.8.c.j 2 5.c odd 4 2
450.8.a.c 1 60.h even 2 1
450.8.c.g 2 60.l odd 4 2
576.8.a.f 1 24.h odd 2 1
576.8.a.g 1 24.f even 2 1
578.8.a.b 1 68.d odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 12 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(16))\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( 1 + 12 T + 2187 T^{2} \)
$5$ \( 1 + 210 T + 78125 T^{2} \)
$7$ \( 1 + 1016 T + 823543 T^{2} \)
$11$ \( 1 + 1092 T + 19487171 T^{2} \)
$13$ \( 1 - 1382 T + 62748517 T^{2} \)
$17$ \( 1 - 14706 T + 410338673 T^{2} \)
$19$ \( 1 - 39940 T + 893871739 T^{2} \)
$23$ \( 1 + 68712 T + 3404825447 T^{2} \)
$29$ \( 1 + 102570 T + 17249876309 T^{2} \)
$31$ \( 1 + 227552 T + 27512614111 T^{2} \)
$37$ \( 1 - 160526 T + 94931877133 T^{2} \)
$41$ \( 1 - 10842 T + 194754273881 T^{2} \)
$43$ \( 1 - 630748 T + 271818611107 T^{2} \)
$47$ \( 1 + 472656 T + 506623120463 T^{2} \)
$53$ \( 1 + 1494018 T + 1174711139837 T^{2} \)
$59$ \( 1 + 2640660 T + 2488651484819 T^{2} \)
$61$ \( 1 - 827702 T + 3142742836021 T^{2} \)
$67$ \( 1 - 126004 T + 6060711605323 T^{2} \)
$71$ \( 1 - 1414728 T + 9095120158391 T^{2} \)
$73$ \( 1 - 980282 T + 11047398519097 T^{2} \)
$79$ \( 1 - 3566800 T + 19203908986159 T^{2} \)
$83$ \( 1 + 5672892 T + 27136050989627 T^{2} \)
$89$ \( 1 + 11951190 T + 44231334895529 T^{2} \)
$97$ \( 1 - 8682146 T + 80798284478113 T^{2} \)
show more
show less