Newspace parameters
Level: | \( N \) | \(=\) | \( 16 = 2^{4} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 16.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(2.56614111701\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 4) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Expression as an eta quotient
\(f(z) = \dfrac{\eta(4z)^{36}}{\eta(2z)^{12}\eta(8z)^{12}}=q\prod_{n=1}^\infty(1 - q^{2n})^{-12}(1 - q^{4n})^{36}(1 - q^{8n})^{-12}\)
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | 12.0000 | 0 | 54.0000 | 0 | 88.0000 | 0 | −99.0000 | 0 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 16.6.a.b | 1 | |
3.b | odd | 2 | 1 | 144.6.a.c | 1 | ||
4.b | odd | 2 | 1 | 4.6.a.a | ✓ | 1 | |
5.b | even | 2 | 1 | 400.6.a.d | 1 | ||
5.c | odd | 4 | 2 | 400.6.c.f | 2 | ||
7.b | odd | 2 | 1 | 784.6.a.d | 1 | ||
8.b | even | 2 | 1 | 64.6.a.b | 1 | ||
8.d | odd | 2 | 1 | 64.6.a.f | 1 | ||
12.b | even | 2 | 1 | 36.6.a.a | 1 | ||
16.e | even | 4 | 2 | 256.6.b.c | 2 | ||
16.f | odd | 4 | 2 | 256.6.b.g | 2 | ||
20.d | odd | 2 | 1 | 100.6.a.b | 1 | ||
20.e | even | 4 | 2 | 100.6.c.b | 2 | ||
24.f | even | 2 | 1 | 576.6.a.bc | 1 | ||
24.h | odd | 2 | 1 | 576.6.a.bd | 1 | ||
28.d | even | 2 | 1 | 196.6.a.e | 1 | ||
28.f | even | 6 | 2 | 196.6.e.d | 2 | ||
28.g | odd | 6 | 2 | 196.6.e.g | 2 | ||
36.f | odd | 6 | 2 | 324.6.e.a | 2 | ||
36.h | even | 6 | 2 | 324.6.e.d | 2 | ||
44.c | even | 2 | 1 | 484.6.a.a | 1 | ||
52.b | odd | 2 | 1 | 676.6.a.a | 1 | ||
52.f | even | 4 | 2 | 676.6.d.a | 2 | ||
60.h | even | 2 | 1 | 900.6.a.h | 1 | ||
60.l | odd | 4 | 2 | 900.6.d.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4.6.a.a | ✓ | 1 | 4.b | odd | 2 | 1 | |
16.6.a.b | 1 | 1.a | even | 1 | 1 | trivial | |
36.6.a.a | 1 | 12.b | even | 2 | 1 | ||
64.6.a.b | 1 | 8.b | even | 2 | 1 | ||
64.6.a.f | 1 | 8.d | odd | 2 | 1 | ||
100.6.a.b | 1 | 20.d | odd | 2 | 1 | ||
100.6.c.b | 2 | 20.e | even | 4 | 2 | ||
144.6.a.c | 1 | 3.b | odd | 2 | 1 | ||
196.6.a.e | 1 | 28.d | even | 2 | 1 | ||
196.6.e.d | 2 | 28.f | even | 6 | 2 | ||
196.6.e.g | 2 | 28.g | odd | 6 | 2 | ||
256.6.b.c | 2 | 16.e | even | 4 | 2 | ||
256.6.b.g | 2 | 16.f | odd | 4 | 2 | ||
324.6.e.a | 2 | 36.f | odd | 6 | 2 | ||
324.6.e.d | 2 | 36.h | even | 6 | 2 | ||
400.6.a.d | 1 | 5.b | even | 2 | 1 | ||
400.6.c.f | 2 | 5.c | odd | 4 | 2 | ||
484.6.a.a | 1 | 44.c | even | 2 | 1 | ||
576.6.a.bc | 1 | 24.f | even | 2 | 1 | ||
576.6.a.bd | 1 | 24.h | odd | 2 | 1 | ||
676.6.a.a | 1 | 52.b | odd | 2 | 1 | ||
676.6.d.a | 2 | 52.f | even | 4 | 2 | ||
784.6.a.d | 1 | 7.b | odd | 2 | 1 | ||
900.6.a.h | 1 | 60.h | even | 2 | 1 | ||
900.6.d.a | 2 | 60.l | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} - 12 \)
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(16))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T - 12 \)
$5$
\( T - 54 \)
$7$
\( T - 88 \)
$11$
\( T + 540 \)
$13$
\( T + 418 \)
$17$
\( T - 594 \)
$19$
\( T + 836 \)
$23$
\( T - 4104 \)
$29$
\( T + 594 \)
$31$
\( T + 4256 \)
$37$
\( T + 298 \)
$41$
\( T - 17226 \)
$43$
\( T - 12100 \)
$47$
\( T - 1296 \)
$53$
\( T - 19494 \)
$59$
\( T - 7668 \)
$61$
\( T + 34738 \)
$67$
\( T + 21812 \)
$71$
\( T - 46872 \)
$73$
\( T - 67562 \)
$79$
\( T - 76912 \)
$83$
\( T + 67716 \)
$89$
\( T - 29754 \)
$97$
\( T + 122398 \)
show more
show less