Properties

Label 16.6.a
Level $16$
Weight $6$
Character orbit 16.a
Rep. character $\chi_{16}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $12$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(16))\).

Total New Old
Modular forms 13 3 10
Cusp forms 7 2 5
Eisenstein series 6 1 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)Dim
\(+\)\(1\)
\(-\)\(1\)

Trace form

\( 2 q - 8 q^{3} - 20 q^{5} + 112 q^{7} + 58 q^{9} - 664 q^{11} + 60 q^{13} + 2128 q^{15} - 604 q^{17} - 3880 q^{19} + 576 q^{21} + 3920 q^{23} + 2142 q^{25} - 2384 q^{27} - 3876 q^{29} + 1472 q^{31} - 4000 q^{33}+ \cdots + 33992 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(16))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
16.6.a.a 16.a 1.a $1$ $2.566$ \(\Q\) None 8.6.a.a \(0\) \(-20\) \(-74\) \(24\) $+$ $\mathrm{SU}(2)$ \(q-20q^{3}-74q^{5}+24q^{7}+157q^{9}+\cdots\)
16.6.a.b 16.a 1.a $1$ $2.566$ \(\Q\) None 4.6.a.a \(0\) \(12\) \(54\) \(88\) $-$ $\mathrm{SU}(2)$ \(q+12q^{3}+54q^{5}+88q^{7}-99q^{9}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(16))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(16)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)