Defining parameters
| Level: | \( N \) | \(=\) | \( 16 = 2^{4} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 16.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(12\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(16))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 13 | 3 | 10 |
| Cusp forms | 7 | 2 | 5 |
| Eisenstein series | 6 | 1 | 5 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(6\) | \(1\) | \(5\) | \(3\) | \(1\) | \(2\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(7\) | \(2\) | \(5\) | \(4\) | \(1\) | \(3\) | \(3\) | \(1\) | \(2\) | |||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(16))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
| 16.6.a.a | $1$ | $2.566$ | \(\Q\) | None | \(0\) | \(-20\) | \(-74\) | \(24\) | $+$ | \(q-20q^{3}-74q^{5}+24q^{7}+157q^{9}+\cdots\) | |
| 16.6.a.b | $1$ | $2.566$ | \(\Q\) | None | \(0\) | \(12\) | \(54\) | \(88\) | $-$ | \(q+12q^{3}+54q^{5}+88q^{7}-99q^{9}+\cdots\) | |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(16))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(16)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)