# Properties

 Label 16.5.f Level $16$ Weight $5$ Character orbit 16.f Rep. character $\chi_{16}(3,\cdot)$ Character field $\Q(\zeta_{4})$ Dimension $14$ Newform subspaces $1$ Sturm bound $10$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$16 = 2^{4}$$ Weight: $$k$$ $$=$$ $$5$$ Character orbit: $$[\chi]$$ $$=$$ 16.f (of order $$4$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$16$$ Character field: $$\Q(i)$$ Newform subspaces: $$1$$ Sturm bound: $$10$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{5}(16, [\chi])$$.

Total New Old
Modular forms 18 18 0
Cusp forms 14 14 0
Eisenstein series 4 4 0

## Trace form

 $$14q - 2q^{2} - 2q^{3} - 8q^{4} - 2q^{5} + 64q^{6} - 4q^{7} - 92q^{8} + O(q^{10})$$ $$14q - 2q^{2} - 2q^{3} - 8q^{4} - 2q^{5} + 64q^{6} - 4q^{7} - 92q^{8} - 100q^{10} + 94q^{11} - 332q^{12} - 2q^{13} + 44q^{14} - 168q^{16} - 4q^{17} + 1390q^{18} - 706q^{19} + 1900q^{20} - 164q^{21} + 900q^{22} + 1148q^{23} - 1872q^{24} - 3416q^{26} - 1664q^{27} - 3784q^{28} + 862q^{29} - 3740q^{30} + 3208q^{32} - 4q^{33} + 7508q^{34} + 1340q^{35} + 11468q^{36} - 1826q^{37} + 3568q^{38} + 2684q^{39} - 5144q^{40} - 17064q^{42} + 1694q^{43} - 14636q^{44} + 1410q^{45} - 5316q^{46} + 6888q^{48} + 682q^{49} + 20070q^{50} - 3012q^{51} + 20452q^{52} - 482q^{53} + 10784q^{54} - 11780q^{55} - 6952q^{56} - 20456q^{58} - 2786q^{59} - 29920q^{60} - 3778q^{61} - 11472q^{62} + 15808q^{64} - 2020q^{65} + 30148q^{66} + 7998q^{67} + 18032q^{68} + 9628q^{69} + 15296q^{70} + 19964q^{71} - 17708q^{72} - 23780q^{74} + 17570q^{75} - 23996q^{76} - 9508q^{77} - 8052q^{78} + 1384q^{80} + 1454q^{81} + 16016q^{82} - 17282q^{83} + 19624q^{84} + 9948q^{85} - 4796q^{86} - 49284q^{87} + 7288q^{88} - 5416q^{90} - 28036q^{91} - 14632q^{92} + 8896q^{93} + 432q^{94} + 6064q^{96} - 4q^{97} - 12246q^{98} + 49214q^{99} + O(q^{100})$$

## Decomposition of $$S_{5}^{\mathrm{new}}(16, [\chi])$$ into newform subspaces

Label Dim. $$A$$ Field CM Traces $q$-expansion
$$a_2$$ $$a_3$$ $$a_5$$ $$a_7$$
16.5.f.a $$14$$ $$1.654$$ $$\mathbb{Q}[x]/(x^{14} - \cdots)$$ None $$-2$$ $$-2$$ $$-2$$ $$-4$$ $$q+\beta _{4}q^{2}-\beta _{6}q^{3}+(-1+2\beta _{3}-\beta _{11}+\cdots)q^{4}+\cdots$$