Defining parameters
Level: | \( N \) | \(=\) | \( 16 = 2^{4} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 16.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(16))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9 | 2 | 7 |
Cusp forms | 3 | 1 | 2 |
Eisenstein series | 6 | 1 | 5 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(+\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(16))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
16.4.a.a | $1$ | $0.944$ | \(\Q\) | None | \(0\) | \(4\) | \(-2\) | \(-24\) | $+$ | \(q+4q^{3}-2q^{5}-24q^{7}-11q^{9}+44q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(16))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(16)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)