Properties

Label 16.28.a.f
Level $16$
Weight $28$
Character orbit 16.a
Self dual yes
Analytic conductor $73.897$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,28,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8968919741\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8494973x^{2} - 3687596342x + 10439241475305 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{42}\cdot 3^{5}\cdot 5 \)
Twist minimal: no (minimal twist has level 8)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 30628) q^{3} + (\beta_{2} + 49 \beta_1 + 886016542) q^{5} + ( - \beta_{3} - 18 \beta_{2} + \cdots + 52941759144) q^{7}+ \cdots + ( - 28 \beta_{3} + \cdots + 4937232626005) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 30628) q^{3} + (\beta_{2} + 49 \beta_1 + 886016542) q^{5} + ( - \beta_{3} - 18 \beta_{2} + \cdots + 52941759144) q^{7}+ \cdots + ( - 10\!\cdots\!64 \beta_{3} + \cdots + 13\!\cdots\!04) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 122512 q^{3} + 3544066168 q^{5} + 211767036576 q^{7} + 19748930504020 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 122512 q^{3} + 3544066168 q^{5} + 211767036576 q^{7} + 19748930504020 q^{9} + 137002338905648 q^{11} - 5580886697000 q^{13} + 25\!\cdots\!12 q^{15}+ \cdots + 53\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 8494973x^{2} - 3687596342x + 10439241475305 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -6400\nu^{3} + 12233856\nu^{2} + 30527542016\nu - 34262675761344 ) / 2193191 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 630016\nu^{3} + 951693696\nu^{2} - 5622508535552\nu - 5784739648646208 ) / 2193191 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 12169728\nu^{3} + 101784758016\nu^{2} + 162699231189504\nu - 465987168920678016 ) / 2193191 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 58\beta_{2} - 3808\beta_1 ) / 169869312 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 607\beta_{3} + 51194\beta_{2} + 6193760\beta _1 + 360758804742144 ) / 84934656 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3545269\beta_{3} - 40468546\beta_{2} - 26348249248\beta _1 + 234903545080971264 ) / 84934656 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1814.94
2921.31
955.106
−2061.48
0 −5.03426e6 0 2.36507e9 0 2.46921e11 0 1.77182e13 0
1.2 0 −75899.9 0 1.61881e9 0 −4.99032e11 0 −7.61984e12 0
1.3 0 248705. 0 −3.54329e9 0 2.27408e11 0 −7.56374e12 0
1.4 0 4.98397e6 0 3.10348e9 0 2.36469e11 0 1.72143e13 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 16.28.a.f 4
4.b odd 2 1 8.28.a.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.28.a.b 4 4.b odd 2 1
16.28.a.f 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 122512T_{3}^{3} - 25118155626912T_{3}^{2} + 4334841990686082816T_{3} + 473627677716066582339840 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(16))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 47\!\cdots\!40 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots - 42\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 66\!\cdots\!32 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 13\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 17\!\cdots\!12 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 37\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 74\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 43\!\cdots\!12 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 26\!\cdots\!76 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 12\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 32\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 67\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 27\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 74\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 99\!\cdots\!08 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 24\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 26\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 28\!\cdots\!48 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 40\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 19\!\cdots\!68 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 73\!\cdots\!56 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 17\!\cdots\!64 \) Copy content Toggle raw display
show more
show less