Properties

Label 16.28.a.e
Level $16$
Weight $28$
Character orbit 16.a
Self dual yes
Analytic conductor $73.897$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,28,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8968919741\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 204497x - 34745464 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{4}\cdot 5\cdot 7 \)
Twist minimal: no (minimal twist has level 8)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 890084) q^{3} + ( - \beta_{2} - 401 \beta_1 - 1434289890) q^{5} + ( - 52 \beta_{2} - 22010 \beta_1 - 75613774040) q^{7} + (2826 \beta_{2} + 1414122 \beta_1 + 4303313660757) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 890084) q^{3} + ( - \beta_{2} - 401 \beta_1 - 1434289890) q^{5} + ( - 52 \beta_{2} - 22010 \beta_1 - 75613774040) q^{7} + (2826 \beta_{2} + 1414122 \beta_1 + 4303313660757) q^{9} + ( - 2856 \beta_{2} + \cdots - 18214662144692) q^{11}+ \cdots + ( - 13\!\cdots\!12 \beta_{2} + \cdots - 40\!\cdots\!60) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2670252 q^{3} - 4302869670 q^{5} - 226841322120 q^{7} + 12909940982271 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 2670252 q^{3} - 4302869670 q^{5} - 226841322120 q^{7} + 12909940982271 q^{9} - 54643986434076 q^{11} - 891540231925278 q^{13} - 17\!\cdots\!20 q^{15}+ \cdots - 12\!\cdots\!80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 204497x - 34745464 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -384\nu^{2} + 137472\nu + 52351232 ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 576384\nu^{2} - 128931072\nu - 78579199232 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 1501\beta_1 ) / 15482880 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 179\beta_{2} + 167879\beta _1 + 1055400837120 ) / 7741440 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−293.345
−227.438
520.783
0 −3.31374e6 0 −1.51668e9 0 −7.50299e10 0 3.35530e12 0
1.2 0 1.13435e6 0 2.35579e9 0 1.21188e11 0 −6.33885e12 0
1.3 0 4.84965e6 0 −5.14199e9 0 −2.72999e11 0 1.58935e13 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 16.28.a.e 3
4.b odd 2 1 8.28.a.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.28.a.a 3 4.b odd 2 1
16.28.a.e 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 2670252T_{3}^{2} - 14328243846864T_{3} + 18229525985802479040 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(16))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + \cdots + 18\!\cdots\!40 \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 24\!\cdots\!32 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 49\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 11\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 41\!\cdots\!76 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 66\!\cdots\!68 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 85\!\cdots\!52 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 14\!\cdots\!32 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 23\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 15\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 87\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 11\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 34\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 24\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 15\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 47\!\cdots\!92 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 62\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 16\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 16\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 53\!\cdots\!28 \) Copy content Toggle raw display
show more
show less