Properties

Label 16.28.a.c
Level $16$
Weight $28$
Character orbit 16.a
Self dual yes
Analytic conductor $73.897$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,28,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8968919741\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1059289}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 264822 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 4)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2688\sqrt{1059289}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 241860) q^{3} + ( - 300 \beta + 72539550) q^{5} + (125334 \beta - 30237625880) q^{7} + ( - 483720 \beta + 86626195029) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta + 241860) q^{3} + ( - 300 \beta + 72539550) q^{5} + (125334 \beta - 30237625880) q^{7} + ( - 483720 \beta + 86626195029) q^{9} + ( - 38879115 \beta + 12420138782700) q^{11} + ( - 319984236 \beta - 39513475440010) q^{13} + ( - 145097550 \beta + 23\!\cdots\!00) q^{15}+ \cdots + ( - 93\!\cdots\!35 \beta + 14\!\cdots\!00) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 483720 q^{3} + 145079100 q^{5} - 60475251760 q^{7} + 173252390058 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 483720 q^{3} + 145079100 q^{5} - 60475251760 q^{7} + 173252390058 q^{9} + 24840277565400 q^{11} - 79026950880020 q^{13} + 46\!\cdots\!00 q^{15}+ \cdots + 29\!\cdots\!00 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
515.109
−514.109
0 −2.52468e6 0 −7.57422e8 0 3.16504e11 0 −1.25160e12 0
1.2 0 3.00840e6 0 9.02501e8 0 −3.76979e11 0 1.42486e12 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 16.28.a.c 2
4.b odd 2 1 4.28.a.a 2
12.b even 2 1 36.28.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.28.a.a 2 4.b odd 2 1
16.28.a.c 2 1.a even 1 1 trivial
36.28.a.a 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 483720T_{3} - 7595231160816 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(16))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 7595231160816 \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 68\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 11\!\cdots\!96 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 78\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 46\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 76\!\cdots\!96 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 51\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 13\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 47\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 13\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 36\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 51\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 60\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 24\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 17\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 18\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 19\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 99\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 62\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 21\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 85\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 29\!\cdots\!84 \) Copy content Toggle raw display
show more
show less