Properties

Label 16.26.a
Level $16$
Weight $26$
Character orbit 16.a
Rep. character $\chi_{16}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $6$
Sturm bound $52$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(52\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_0(16))\).

Total New Old
Modular forms 53 13 40
Cusp forms 47 12 35
Eisenstein series 6 1 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)Dim
\(+\)\(6\)
\(-\)\(6\)

Trace form

\( 12 q - 531440 q^{3} + 153134280 q^{5} + 49570129440 q^{7} + 2747998934812 q^{9} - 16415673834960 q^{11} + 35520940152360 q^{13} - 231131385901472 q^{15} - 508652996207400 q^{17} + 92\!\cdots\!36 q^{19}+ \cdots + 21\!\cdots\!96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_0(16))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
16.26.a.a 16.a 1.a $1$ $63.359$ \(\Q\) None 2.26.a.a \(0\) \(-97956\) \(341005350\) \(40882637368\) $-$ $\mathrm{SU}(2)$ \(q-97956q^{3}+341005350q^{5}+40882637368q^{7}+\cdots\)
16.26.a.b 16.a 1.a $1$ $63.359$ \(\Q\) None 1.26.a.a \(0\) \(195804\) \(-741989850\) \(-39080597192\) $-$ $\mathrm{SU}(2)$ \(q+195804q^{3}-741989850q^{5}-39080597192q^{7}+\cdots\)
16.26.a.c 16.a 1.a $2$ $63.359$ \(\Q(\sqrt{106705}) \) None 2.26.a.b \(0\) \(-379848\) \(741953100\) \(376536944\) $-$ $\mathrm{SU}(2)$ \(q+(-189924-\beta )q^{3}+(370976550+\cdots)q^{5}+\cdots\)
16.26.a.d 16.a 1.a $2$ $63.359$ \(\Q(\sqrt{358121}) \) None 4.26.a.a \(0\) \(899640\) \(-399350196\) \(40518462320\) $-$ $\mathrm{SU}(2)$ \(q+(449820-\beta )q^{3}+(-199675098+\cdots)q^{5}+\cdots\)
16.26.a.e 16.a 1.a $3$ $63.359$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 8.26.a.b \(0\) \(-1255436\) \(48510450\) \(-5257017240\) $+$ $\mathrm{SU}(2)$ \(q+(-418479+\beta _{1})q^{3}+(16170191+\cdots)q^{5}+\cdots\)
16.26.a.f 16.a 1.a $3$ $63.359$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 8.26.a.a \(0\) \(106356\) \(163005426\) \(12130107240\) $+$ $\mathrm{SU}(2)$ \(q+(35452+\beta _{1})q^{3}+(54335142-26\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_0(16))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_0(16)) \simeq \) \(S_{26}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)