Properties

Label 16.26
Level 16
Weight 26
Dimension 110
Nonzero newspaces 2
Newform subspaces 7
Sturm bound 416
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 26 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 7 \)
Sturm bound: \(416\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_1(16))\).

Total New Old
Modular forms 207 115 92
Cusp forms 193 110 83
Eisenstein series 14 5 9

Trace form

\( 110 q - 2 q^{2} - 531442 q^{3} - 35720280 q^{4} + 153134278 q^{5} + 5523305584 q^{6} + 49570129440 q^{7} - 111585796556 q^{8} + 2747998934812 q^{9} + 11204469279564 q^{10} - 30416451244558 q^{11} + 4457958449476 q^{12}+ \cdots - 26\!\cdots\!74 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_1(16))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
16.26.a \(\chi_{16}(1, \cdot)\) 16.26.a.a 1 1
16.26.a.b 1
16.26.a.c 2
16.26.a.d 2
16.26.a.e 3
16.26.a.f 3
16.26.b \(\chi_{16}(9, \cdot)\) None 0 1
16.26.e \(\chi_{16}(5, \cdot)\) 16.26.e.a 98 2

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_1(16))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_1(16)) \cong \) \(S_{26}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)