[N,k,chi] = [16,22,Mod(1,16)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(16, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("16.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2688\sqrt{2161}\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 65640T_{3} - 14536815984 \)
T3^2 + 65640*T3 - 14536815984
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(16))\).
$p$
$F_p(T)$
$2$
\( T^{2} \)
T^2
$3$
\( T^{2} + 65640 T - 14536815984 \)
T^2 + 65640*T - 14536815984
$5$
\( T^{2} + \cdots - 602941510374300 \)
T^2 - 13689324*T - 602941510374300
$7$
\( T^{2} - 260508080 T - 52\!\cdots\!64 \)
T^2 - 260508080*T - 523979757271484864
$11$
\( T^{2} + 145435963320 T + 37\!\cdots\!00 \)
T^2 + 145435963320*T + 3744063458354550474000
$13$
\( T^{2} - 1428900417340 T + 50\!\cdots\!76 \)
T^2 - 1428900417340*T + 508792350703839023859076
$17$
\( T^{2} - 1840620576420 T - 11\!\cdots\!56 \)
T^2 - 1840620576420*T - 111587534986863099167066556
$19$
\( T^{2} - 16780743928568 T - 10\!\cdots\!44 \)
T^2 - 16780743928568*T - 1029813754402613290511477744
$23$
\( T^{2} - 319691925426960 T + 19\!\cdots\!04 \)
T^2 - 319691925426960*T + 19399048867628871982312970304
$29$
\( T^{2} + \cdots + 31\!\cdots\!16 \)
T^2 - 3742111775766492*T + 3152448468197568105932233838916
$31$
\( T^{2} + 112042353462592 T - 32\!\cdots\!84 \)
T^2 + 112042353462592*T - 326658618033233761411318160384
$37$
\( T^{2} + \cdots - 66\!\cdots\!44 \)
T^2 + 33362705637547220*T - 663649252516730585773944853052444
$41$
\( T^{2} + \cdots + 65\!\cdots\!56 \)
T^2 - 175129744323133332*T + 6564529271551297737155742807001956
$43$
\( T^{2} + \cdots - 25\!\cdots\!00 \)
T^2 + 15346613416528120*T - 25445046500017259166904915417506800
$47$
\( T^{2} + \cdots + 11\!\cdots\!64 \)
T^2 - 684848819288455200*T + 112466892925179871217951998752555264
$53$
\( T^{2} + \cdots - 70\!\cdots\!16 \)
T^2 - 675305394244421580*T - 702065813129431455661427948572167516
$59$
\( T^{2} + \cdots - 56\!\cdots\!96 \)
T^2 + 1042445250435434904*T - 569906843823145646513898806246653296
$61$
\( T^{2} + \cdots + 45\!\cdots\!24 \)
T^2 - 9065997829736468764*T + 4515034583522915039640423128837795524
$67$
\( T^{2} + \cdots + 22\!\cdots\!56 \)
T^2 - 30464301046802775320*T + 225942521425912212010106807399173184656
$71$
\( T^{2} + \cdots - 19\!\cdots\!76 \)
T^2 - 8199093502830518064*T - 191359247694642928957929692279696381376
$73$
\( T^{2} + \cdots - 63\!\cdots\!24 \)
T^2 - 25415086659374793940*T - 636380828039675818656768818811923639324
$79$
\( T^{2} + \cdots + 35\!\cdots\!04 \)
T^2 + 121204353225060164896*T + 3517697144635126645604555333030146511104
$83$
\( T^{2} + \cdots + 22\!\cdots\!64 \)
T^2 + 108742936757033809800*T + 2207909989750197501974459605125848411664
$89$
\( T^{2} + \cdots - 88\!\cdots\!04 \)
T^2 + 184207999274965368972*T - 8817213503400738099413107050859805994204
$97$
\( T^{2} + \cdots - 28\!\cdots\!24 \)
T^2 - 739497785188476467140*T - 283966102422014109258441421435503651097724
show more
show less