Properties

Label 16.22.a.a.1.1
Level $16$
Weight $22$
Character 16.1
Self dual yes
Analytic conductor $44.716$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,22,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.7163750859\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-71604.0 q^{3} -2.86938e7 q^{5} +8.53202e8 q^{7} -5.33322e9 q^{9} +O(q^{10})\) \(q-71604.0 q^{3} -2.86938e7 q^{5} +8.53202e8 q^{7} -5.33322e9 q^{9} -8.67312e10 q^{11} -8.95323e11 q^{13} +2.05459e12 q^{15} +3.25757e12 q^{17} -2.30325e13 q^{19} -6.10927e13 q^{21} -1.46496e14 q^{23} +3.46495e14 q^{25} +1.13088e15 q^{27} -7.34052e14 q^{29} +3.14666e15 q^{31} +6.21030e15 q^{33} -2.44816e16 q^{35} -1.29638e16 q^{37} +6.41087e16 q^{39} +4.57146e16 q^{41} +2.40736e16 q^{43} +1.53030e17 q^{45} +4.49992e17 q^{47} +1.69408e17 q^{49} -2.33255e17 q^{51} +2.06484e18 q^{53} +2.48864e18 q^{55} +1.64922e18 q^{57} +3.78050e18 q^{59} -7.61981e18 q^{61} -4.55032e18 q^{63} +2.56902e19 q^{65} +1.87912e19 q^{67} +1.04897e19 q^{69} +4.52649e18 q^{71} -2.55715e19 q^{73} -2.48104e19 q^{75} -7.39992e19 q^{77} -9.93364e19 q^{79} -2.51884e19 q^{81} -2.95818e18 q^{83} -9.34719e19 q^{85} +5.25610e19 q^{87} +1.18803e20 q^{89} -7.63892e20 q^{91} -2.25314e20 q^{93} +6.60888e20 q^{95} -5.69053e20 q^{97} +4.62556e20 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −71604.0 −0.700106 −0.350053 0.936730i \(-0.613837\pi\)
−0.350053 + 0.936730i \(0.613837\pi\)
\(4\) 0 0
\(5\) −2.86938e7 −1.31402 −0.657011 0.753881i \(-0.728179\pi\)
−0.657011 + 0.753881i \(0.728179\pi\)
\(6\) 0 0
\(7\) 8.53202e8 1.14162 0.570811 0.821081i \(-0.306629\pi\)
0.570811 + 0.821081i \(0.306629\pi\)
\(8\) 0 0
\(9\) −5.33322e9 −0.509851
\(10\) 0 0
\(11\) −8.67312e10 −1.00821 −0.504106 0.863642i \(-0.668178\pi\)
−0.504106 + 0.863642i \(0.668178\pi\)
\(12\) 0 0
\(13\) −8.95323e11 −1.80125 −0.900627 0.434594i \(-0.856892\pi\)
−0.900627 + 0.434594i \(0.856892\pi\)
\(14\) 0 0
\(15\) 2.05459e12 0.919955
\(16\) 0 0
\(17\) 3.25757e12 0.391904 0.195952 0.980613i \(-0.437220\pi\)
0.195952 + 0.980613i \(0.437220\pi\)
\(18\) 0 0
\(19\) −2.30325e13 −0.861842 −0.430921 0.902390i \(-0.641811\pi\)
−0.430921 + 0.902390i \(0.641811\pi\)
\(20\) 0 0
\(21\) −6.10927e13 −0.799258
\(22\) 0 0
\(23\) −1.46496e14 −0.737365 −0.368683 0.929555i \(-0.620191\pi\)
−0.368683 + 0.929555i \(0.620191\pi\)
\(24\) 0 0
\(25\) 3.46495e14 0.726653
\(26\) 0 0
\(27\) 1.13088e15 1.05706
\(28\) 0 0
\(29\) −7.34052e14 −0.324002 −0.162001 0.986791i \(-0.551795\pi\)
−0.162001 + 0.986791i \(0.551795\pi\)
\(30\) 0 0
\(31\) 3.14666e15 0.689529 0.344765 0.938689i \(-0.387959\pi\)
0.344765 + 0.938689i \(0.387959\pi\)
\(32\) 0 0
\(33\) 6.21030e15 0.705856
\(34\) 0 0
\(35\) −2.44816e16 −1.50012
\(36\) 0 0
\(37\) −1.29638e16 −0.443215 −0.221608 0.975136i \(-0.571130\pi\)
−0.221608 + 0.975136i \(0.571130\pi\)
\(38\) 0 0
\(39\) 6.41087e16 1.26107
\(40\) 0 0
\(41\) 4.57146e16 0.531894 0.265947 0.963988i \(-0.414315\pi\)
0.265947 + 0.963988i \(0.414315\pi\)
\(42\) 0 0
\(43\) 2.40736e16 0.169872 0.0849361 0.996386i \(-0.472931\pi\)
0.0849361 + 0.996386i \(0.472931\pi\)
\(44\) 0 0
\(45\) 1.53030e17 0.669955
\(46\) 0 0
\(47\) 4.49992e17 1.24789 0.623946 0.781467i \(-0.285528\pi\)
0.623946 + 0.781467i \(0.285528\pi\)
\(48\) 0 0
\(49\) 1.69408e17 0.303303
\(50\) 0 0
\(51\) −2.33255e17 −0.274375
\(52\) 0 0
\(53\) 2.06484e18 1.62177 0.810885 0.585206i \(-0.198986\pi\)
0.810885 + 0.585206i \(0.198986\pi\)
\(54\) 0 0
\(55\) 2.48864e18 1.32481
\(56\) 0 0
\(57\) 1.64922e18 0.603381
\(58\) 0 0
\(59\) 3.78050e18 0.962948 0.481474 0.876460i \(-0.340102\pi\)
0.481474 + 0.876460i \(0.340102\pi\)
\(60\) 0 0
\(61\) −7.61981e18 −1.36767 −0.683835 0.729637i \(-0.739689\pi\)
−0.683835 + 0.729637i \(0.739689\pi\)
\(62\) 0 0
\(63\) −4.55032e18 −0.582057
\(64\) 0 0
\(65\) 2.56902e19 2.36689
\(66\) 0 0
\(67\) 1.87912e19 1.25941 0.629706 0.776833i \(-0.283175\pi\)
0.629706 + 0.776833i \(0.283175\pi\)
\(68\) 0 0
\(69\) 1.04897e19 0.516234
\(70\) 0 0
\(71\) 4.52649e18 0.165025 0.0825123 0.996590i \(-0.473706\pi\)
0.0825123 + 0.996590i \(0.473706\pi\)
\(72\) 0 0
\(73\) −2.55715e19 −0.696411 −0.348205 0.937418i \(-0.613209\pi\)
−0.348205 + 0.937418i \(0.613209\pi\)
\(74\) 0 0
\(75\) −2.48104e19 −0.508735
\(76\) 0 0
\(77\) −7.39992e19 −1.15100
\(78\) 0 0
\(79\) −9.93364e19 −1.18039 −0.590193 0.807262i \(-0.700948\pi\)
−0.590193 + 0.807262i \(0.700948\pi\)
\(80\) 0 0
\(81\) −2.51884e19 −0.230201
\(82\) 0 0
\(83\) −2.95818e18 −0.0209269 −0.0104634 0.999945i \(-0.503331\pi\)
−0.0104634 + 0.999945i \(0.503331\pi\)
\(84\) 0 0
\(85\) −9.34719e19 −0.514970
\(86\) 0 0
\(87\) 5.25610e19 0.226836
\(88\) 0 0
\(89\) 1.18803e20 0.403861 0.201931 0.979400i \(-0.435278\pi\)
0.201931 + 0.979400i \(0.435278\pi\)
\(90\) 0 0
\(91\) −7.63892e20 −2.05635
\(92\) 0 0
\(93\) −2.25314e20 −0.482744
\(94\) 0 0
\(95\) 6.60888e20 1.13248
\(96\) 0 0
\(97\) −5.69053e20 −0.783519 −0.391759 0.920068i \(-0.628133\pi\)
−0.391759 + 0.920068i \(0.628133\pi\)
\(98\) 0 0
\(99\) 4.62556e20 0.514038
\(100\) 0 0
\(101\) −2.65047e20 −0.238753 −0.119376 0.992849i \(-0.538090\pi\)
−0.119376 + 0.992849i \(0.538090\pi\)
\(102\) 0 0
\(103\) −1.51294e21 −1.10925 −0.554625 0.832100i \(-0.687138\pi\)
−0.554625 + 0.832100i \(0.687138\pi\)
\(104\) 0 0
\(105\) 1.75298e21 1.05024
\(106\) 0 0
\(107\) 1.78568e21 0.877552 0.438776 0.898596i \(-0.355412\pi\)
0.438776 + 0.898596i \(0.355412\pi\)
\(108\) 0 0
\(109\) 3.33894e21 1.35092 0.675462 0.737395i \(-0.263944\pi\)
0.675462 + 0.737395i \(0.263944\pi\)
\(110\) 0 0
\(111\) 9.28261e20 0.310298
\(112\) 0 0
\(113\) −3.04712e21 −0.844434 −0.422217 0.906495i \(-0.638748\pi\)
−0.422217 + 0.906495i \(0.638748\pi\)
\(114\) 0 0
\(115\) 4.20351e21 0.968914
\(116\) 0 0
\(117\) 4.77496e21 0.918371
\(118\) 0 0
\(119\) 2.77936e21 0.447407
\(120\) 0 0
\(121\) 1.22048e20 0.0164924
\(122\) 0 0
\(123\) −3.27335e21 −0.372382
\(124\) 0 0
\(125\) 3.74000e21 0.359184
\(126\) 0 0
\(127\) 7.04680e21 0.572866 0.286433 0.958100i \(-0.407530\pi\)
0.286433 + 0.958100i \(0.407530\pi\)
\(128\) 0 0
\(129\) −1.72377e21 −0.118929
\(130\) 0 0
\(131\) −9.42787e21 −0.553433 −0.276716 0.960952i \(-0.589246\pi\)
−0.276716 + 0.960952i \(0.589246\pi\)
\(132\) 0 0
\(133\) −1.96514e22 −0.983899
\(134\) 0 0
\(135\) −3.24493e22 −1.38900
\(136\) 0 0
\(137\) −2.01753e21 −0.0740039 −0.0370020 0.999315i \(-0.511781\pi\)
−0.0370020 + 0.999315i \(0.511781\pi\)
\(138\) 0 0
\(139\) −3.38653e22 −1.06684 −0.533420 0.845851i \(-0.679093\pi\)
−0.533420 + 0.845851i \(0.679093\pi\)
\(140\) 0 0
\(141\) −3.22212e22 −0.873658
\(142\) 0 0
\(143\) 7.76525e22 1.81605
\(144\) 0 0
\(145\) 2.10627e22 0.425746
\(146\) 0 0
\(147\) −1.21303e22 −0.212344
\(148\) 0 0
\(149\) −3.40800e22 −0.517658 −0.258829 0.965923i \(-0.583337\pi\)
−0.258829 + 0.965923i \(0.583337\pi\)
\(150\) 0 0
\(151\) −2.38856e22 −0.315413 −0.157706 0.987486i \(-0.550410\pi\)
−0.157706 + 0.987486i \(0.550410\pi\)
\(152\) 0 0
\(153\) −1.73733e22 −0.199813
\(154\) 0 0
\(155\) −9.02897e22 −0.906056
\(156\) 0 0
\(157\) 1.27315e23 1.11669 0.558345 0.829609i \(-0.311436\pi\)
0.558345 + 0.829609i \(0.311436\pi\)
\(158\) 0 0
\(159\) −1.47851e23 −1.13541
\(160\) 0 0
\(161\) −1.24990e23 −0.841793
\(162\) 0 0
\(163\) 2.36289e23 1.39789 0.698946 0.715175i \(-0.253653\pi\)
0.698946 + 0.715175i \(0.253653\pi\)
\(164\) 0 0
\(165\) −1.78197e23 −0.927510
\(166\) 0 0
\(167\) 3.15464e23 1.44686 0.723429 0.690398i \(-0.242565\pi\)
0.723429 + 0.690398i \(0.242565\pi\)
\(168\) 0 0
\(169\) 5.54540e23 2.24451
\(170\) 0 0
\(171\) 1.22837e23 0.439411
\(172\) 0 0
\(173\) 4.08353e23 1.29286 0.646431 0.762972i \(-0.276261\pi\)
0.646431 + 0.762972i \(0.276261\pi\)
\(174\) 0 0
\(175\) 2.95631e23 0.829564
\(176\) 0 0
\(177\) −2.70699e23 −0.674166
\(178\) 0 0
\(179\) −7.91545e23 −1.75194 −0.875970 0.482366i \(-0.839777\pi\)
−0.875970 + 0.482366i \(0.839777\pi\)
\(180\) 0 0
\(181\) −4.73055e23 −0.931722 −0.465861 0.884858i \(-0.654255\pi\)
−0.465861 + 0.884858i \(0.654255\pi\)
\(182\) 0 0
\(183\) 5.45609e23 0.957514
\(184\) 0 0
\(185\) 3.71981e23 0.582394
\(186\) 0 0
\(187\) −2.82533e23 −0.395122
\(188\) 0 0
\(189\) 9.64872e23 1.20676
\(190\) 0 0
\(191\) 4.27960e23 0.479239 0.239620 0.970867i \(-0.422977\pi\)
0.239620 + 0.970867i \(0.422977\pi\)
\(192\) 0 0
\(193\) −1.88476e24 −1.89193 −0.945964 0.324273i \(-0.894880\pi\)
−0.945964 + 0.324273i \(0.894880\pi\)
\(194\) 0 0
\(195\) −1.83952e24 −1.65707
\(196\) 0 0
\(197\) 8.32416e22 0.0673666 0.0336833 0.999433i \(-0.489276\pi\)
0.0336833 + 0.999433i \(0.489276\pi\)
\(198\) 0 0
\(199\) 8.81455e23 0.641568 0.320784 0.947152i \(-0.396054\pi\)
0.320784 + 0.947152i \(0.396054\pi\)
\(200\) 0 0
\(201\) −1.34552e24 −0.881723
\(202\) 0 0
\(203\) −6.26295e23 −0.369888
\(204\) 0 0
\(205\) −1.31173e24 −0.698920
\(206\) 0 0
\(207\) 7.81294e23 0.375946
\(208\) 0 0
\(209\) 1.99763e24 0.868920
\(210\) 0 0
\(211\) −3.79755e24 −1.49464 −0.747322 0.664462i \(-0.768661\pi\)
−0.747322 + 0.664462i \(0.768661\pi\)
\(212\) 0 0
\(213\) −3.24115e23 −0.115535
\(214\) 0 0
\(215\) −6.90763e23 −0.223216
\(216\) 0 0
\(217\) 2.68474e24 0.787182
\(218\) 0 0
\(219\) 1.83102e24 0.487562
\(220\) 0 0
\(221\) −2.91658e24 −0.705918
\(222\) 0 0
\(223\) 3.92011e24 0.863171 0.431586 0.902072i \(-0.357954\pi\)
0.431586 + 0.902072i \(0.357954\pi\)
\(224\) 0 0
\(225\) −1.84794e24 −0.370485
\(226\) 0 0
\(227\) 1.12173e24 0.204936 0.102468 0.994736i \(-0.467326\pi\)
0.102468 + 0.994736i \(0.467326\pi\)
\(228\) 0 0
\(229\) 3.79307e23 0.0632002 0.0316001 0.999501i \(-0.489940\pi\)
0.0316001 + 0.999501i \(0.489940\pi\)
\(230\) 0 0
\(231\) 5.29864e24 0.805821
\(232\) 0 0
\(233\) 4.03014e24 0.559865 0.279933 0.960020i \(-0.409688\pi\)
0.279933 + 0.960020i \(0.409688\pi\)
\(234\) 0 0
\(235\) −1.29120e25 −1.63976
\(236\) 0 0
\(237\) 7.11289e24 0.826396
\(238\) 0 0
\(239\) 1.75220e25 1.86383 0.931916 0.362673i \(-0.118136\pi\)
0.931916 + 0.362673i \(0.118136\pi\)
\(240\) 0 0
\(241\) 9.55213e24 0.930939 0.465470 0.885064i \(-0.345885\pi\)
0.465470 + 0.885064i \(0.345885\pi\)
\(242\) 0 0
\(243\) −1.00258e25 −0.895891
\(244\) 0 0
\(245\) −4.86097e24 −0.398546
\(246\) 0 0
\(247\) 2.06215e25 1.55240
\(248\) 0 0
\(249\) 2.11818e23 0.0146511
\(250\) 0 0
\(251\) −6.29655e24 −0.400432 −0.200216 0.979752i \(-0.564164\pi\)
−0.200216 + 0.979752i \(0.564164\pi\)
\(252\) 0 0
\(253\) 1.27057e25 0.743421
\(254\) 0 0
\(255\) 6.69296e24 0.360534
\(256\) 0 0
\(257\) −1.45248e25 −0.720794 −0.360397 0.932799i \(-0.617359\pi\)
−0.360397 + 0.932799i \(0.617359\pi\)
\(258\) 0 0
\(259\) −1.10608e25 −0.505985
\(260\) 0 0
\(261\) 3.91486e24 0.165193
\(262\) 0 0
\(263\) −4.13430e25 −1.61015 −0.805075 0.593173i \(-0.797875\pi\)
−0.805075 + 0.593173i \(0.797875\pi\)
\(264\) 0 0
\(265\) −5.92480e25 −2.13104
\(266\) 0 0
\(267\) −8.50677e24 −0.282746
\(268\) 0 0
\(269\) −5.18786e25 −1.59437 −0.797185 0.603735i \(-0.793678\pi\)
−0.797185 + 0.603735i \(0.793678\pi\)
\(270\) 0 0
\(271\) 2.35538e25 0.669706 0.334853 0.942270i \(-0.391313\pi\)
0.334853 + 0.942270i \(0.391313\pi\)
\(272\) 0 0
\(273\) 5.46977e25 1.43967
\(274\) 0 0
\(275\) −3.00519e25 −0.732621
\(276\) 0 0
\(277\) 5.29041e25 1.19523 0.597615 0.801783i \(-0.296115\pi\)
0.597615 + 0.801783i \(0.296115\pi\)
\(278\) 0 0
\(279\) −1.67819e25 −0.351557
\(280\) 0 0
\(281\) 2.17922e25 0.423530 0.211765 0.977321i \(-0.432079\pi\)
0.211765 + 0.977321i \(0.432079\pi\)
\(282\) 0 0
\(283\) 5.39243e24 0.0972808 0.0486404 0.998816i \(-0.484511\pi\)
0.0486404 + 0.998816i \(0.484511\pi\)
\(284\) 0 0
\(285\) −4.73222e25 −0.792856
\(286\) 0 0
\(287\) 3.90038e25 0.607222
\(288\) 0 0
\(289\) −5.84802e25 −0.846411
\(290\) 0 0
\(291\) 4.07465e25 0.548547
\(292\) 0 0
\(293\) 3.92947e25 0.492293 0.246147 0.969233i \(-0.420836\pi\)
0.246147 + 0.969233i \(0.420836\pi\)
\(294\) 0 0
\(295\) −1.08477e26 −1.26533
\(296\) 0 0
\(297\) −9.80828e25 −1.06574
\(298\) 0 0
\(299\) 1.31161e26 1.32818
\(300\) 0 0
\(301\) 2.05397e25 0.193930
\(302\) 0 0
\(303\) 1.89784e25 0.167152
\(304\) 0 0
\(305\) 2.18641e26 1.79715
\(306\) 0 0
\(307\) −1.23827e26 −0.950306 −0.475153 0.879903i \(-0.657607\pi\)
−0.475153 + 0.879903i \(0.657607\pi\)
\(308\) 0 0
\(309\) 1.08332e26 0.776593
\(310\) 0 0
\(311\) 1.58511e26 1.06188 0.530941 0.847409i \(-0.321839\pi\)
0.530941 + 0.847409i \(0.321839\pi\)
\(312\) 0 0
\(313\) 1.15882e26 0.725770 0.362885 0.931834i \(-0.381792\pi\)
0.362885 + 0.931834i \(0.381792\pi\)
\(314\) 0 0
\(315\) 1.30566e26 0.764836
\(316\) 0 0
\(317\) −5.09758e25 −0.279410 −0.139705 0.990193i \(-0.544615\pi\)
−0.139705 + 0.990193i \(0.544615\pi\)
\(318\) 0 0
\(319\) 6.36652e25 0.326663
\(320\) 0 0
\(321\) −1.27862e26 −0.614380
\(322\) 0 0
\(323\) −7.50298e25 −0.337759
\(324\) 0 0
\(325\) −3.10225e26 −1.30889
\(326\) 0 0
\(327\) −2.39082e26 −0.945790
\(328\) 0 0
\(329\) 3.83934e26 1.42462
\(330\) 0 0
\(331\) 4.64134e26 1.61603 0.808015 0.589162i \(-0.200542\pi\)
0.808015 + 0.589162i \(0.200542\pi\)
\(332\) 0 0
\(333\) 6.91389e25 0.225974
\(334\) 0 0
\(335\) −5.39189e26 −1.65490
\(336\) 0 0
\(337\) −2.39093e26 −0.689371 −0.344686 0.938718i \(-0.612014\pi\)
−0.344686 + 0.938718i \(0.612014\pi\)
\(338\) 0 0
\(339\) 2.18186e26 0.591194
\(340\) 0 0
\(341\) −2.72914e26 −0.695192
\(342\) 0 0
\(343\) −3.32013e26 −0.795366
\(344\) 0 0
\(345\) −3.00988e26 −0.678343
\(346\) 0 0
\(347\) 3.01925e26 0.640383 0.320192 0.947353i \(-0.396253\pi\)
0.320192 + 0.947353i \(0.396253\pi\)
\(348\) 0 0
\(349\) 4.92021e26 0.982464 0.491232 0.871029i \(-0.336547\pi\)
0.491232 + 0.871029i \(0.336547\pi\)
\(350\) 0 0
\(351\) −1.01251e27 −1.90403
\(352\) 0 0
\(353\) −6.69643e26 −1.18634 −0.593169 0.805078i \(-0.702124\pi\)
−0.593169 + 0.805078i \(0.702124\pi\)
\(354\) 0 0
\(355\) −1.29882e26 −0.216846
\(356\) 0 0
\(357\) −1.99014e26 −0.313232
\(358\) 0 0
\(359\) −5.89124e26 −0.874410 −0.437205 0.899362i \(-0.644032\pi\)
−0.437205 + 0.899362i \(0.644032\pi\)
\(360\) 0 0
\(361\) −1.83715e26 −0.257228
\(362\) 0 0
\(363\) −8.73909e24 −0.0115464
\(364\) 0 0
\(365\) 7.33741e26 0.915099
\(366\) 0 0
\(367\) 1.61827e27 1.90571 0.952854 0.303428i \(-0.0981313\pi\)
0.952854 + 0.303428i \(0.0981313\pi\)
\(368\) 0 0
\(369\) −2.43806e26 −0.271187
\(370\) 0 0
\(371\) 1.76172e27 1.85145
\(372\) 0 0
\(373\) 1.12579e26 0.111819 0.0559095 0.998436i \(-0.482194\pi\)
0.0559095 + 0.998436i \(0.482194\pi\)
\(374\) 0 0
\(375\) −2.67799e26 −0.251467
\(376\) 0 0
\(377\) 6.57214e26 0.583610
\(378\) 0 0
\(379\) −1.61687e27 −1.35820 −0.679101 0.734045i \(-0.737630\pi\)
−0.679101 + 0.734045i \(0.737630\pi\)
\(380\) 0 0
\(381\) −5.04579e26 −0.401067
\(382\) 0 0
\(383\) 7.30139e25 0.0549311 0.0274656 0.999623i \(-0.491256\pi\)
0.0274656 + 0.999623i \(0.491256\pi\)
\(384\) 0 0
\(385\) 2.12332e27 1.51244
\(386\) 0 0
\(387\) −1.28390e26 −0.0866095
\(388\) 0 0
\(389\) 4.38998e26 0.280538 0.140269 0.990113i \(-0.455203\pi\)
0.140269 + 0.990113i \(0.455203\pi\)
\(390\) 0 0
\(391\) −4.77220e26 −0.288976
\(392\) 0 0
\(393\) 6.75073e26 0.387462
\(394\) 0 0
\(395\) 2.85034e27 1.55105
\(396\) 0 0
\(397\) −1.33852e27 −0.690756 −0.345378 0.938464i \(-0.612249\pi\)
−0.345378 + 0.938464i \(0.612249\pi\)
\(398\) 0 0
\(399\) 1.40712e27 0.688834
\(400\) 0 0
\(401\) −2.07292e27 −0.962870 −0.481435 0.876482i \(-0.659884\pi\)
−0.481435 + 0.876482i \(0.659884\pi\)
\(402\) 0 0
\(403\) −2.81728e27 −1.24202
\(404\) 0 0
\(405\) 7.22750e26 0.302489
\(406\) 0 0
\(407\) 1.12437e27 0.446855
\(408\) 0 0
\(409\) −4.12924e26 −0.155874 −0.0779372 0.996958i \(-0.524833\pi\)
−0.0779372 + 0.996958i \(0.524833\pi\)
\(410\) 0 0
\(411\) 1.44463e26 0.0518106
\(412\) 0 0
\(413\) 3.22553e27 1.09932
\(414\) 0 0
\(415\) 8.48813e25 0.0274984
\(416\) 0 0
\(417\) 2.42489e27 0.746901
\(418\) 0 0
\(419\) 3.55921e27 1.04257 0.521286 0.853382i \(-0.325452\pi\)
0.521286 + 0.853382i \(0.325452\pi\)
\(420\) 0 0
\(421\) −3.99663e27 −1.11361 −0.556804 0.830644i \(-0.687972\pi\)
−0.556804 + 0.830644i \(0.687972\pi\)
\(422\) 0 0
\(423\) −2.39991e27 −0.636239
\(424\) 0 0
\(425\) 1.12873e27 0.284778
\(426\) 0 0
\(427\) −6.50124e27 −1.56136
\(428\) 0 0
\(429\) −5.56023e27 −1.27143
\(430\) 0 0
\(431\) −5.74296e27 −1.25062 −0.625308 0.780378i \(-0.715027\pi\)
−0.625308 + 0.780378i \(0.715027\pi\)
\(432\) 0 0
\(433\) −6.99214e27 −1.45040 −0.725199 0.688540i \(-0.758252\pi\)
−0.725199 + 0.688540i \(0.758252\pi\)
\(434\) 0 0
\(435\) −1.50817e27 −0.298067
\(436\) 0 0
\(437\) 3.37416e27 0.635492
\(438\) 0 0
\(439\) 8.74047e27 1.56912 0.784562 0.620050i \(-0.212888\pi\)
0.784562 + 0.620050i \(0.212888\pi\)
\(440\) 0 0
\(441\) −9.03493e26 −0.154639
\(442\) 0 0
\(443\) −1.15967e28 −1.89276 −0.946380 0.323055i \(-0.895290\pi\)
−0.946380 + 0.323055i \(0.895290\pi\)
\(444\) 0 0
\(445\) −3.40891e27 −0.530683
\(446\) 0 0
\(447\) 2.44026e27 0.362416
\(448\) 0 0
\(449\) 6.44084e27 0.912758 0.456379 0.889785i \(-0.349146\pi\)
0.456379 + 0.889785i \(0.349146\pi\)
\(450\) 0 0
\(451\) −3.96489e27 −0.536262
\(452\) 0 0
\(453\) 1.71031e27 0.220822
\(454\) 0 0
\(455\) 2.19189e28 2.70209
\(456\) 0 0
\(457\) −8.27692e27 −0.974425 −0.487212 0.873283i \(-0.661986\pi\)
−0.487212 + 0.873283i \(0.661986\pi\)
\(458\) 0 0
\(459\) 3.68393e27 0.414265
\(460\) 0 0
\(461\) 4.93315e27 0.529986 0.264993 0.964250i \(-0.414630\pi\)
0.264993 + 0.964250i \(0.414630\pi\)
\(462\) 0 0
\(463\) 4.15139e26 0.0426181 0.0213090 0.999773i \(-0.493217\pi\)
0.0213090 + 0.999773i \(0.493217\pi\)
\(464\) 0 0
\(465\) 6.46510e27 0.634336
\(466\) 0 0
\(467\) −7.30716e27 −0.685364 −0.342682 0.939452i \(-0.611335\pi\)
−0.342682 + 0.939452i \(0.611335\pi\)
\(468\) 0 0
\(469\) 1.60327e28 1.43777
\(470\) 0 0
\(471\) −9.11626e27 −0.781802
\(472\) 0 0
\(473\) −2.08793e27 −0.171267
\(474\) 0 0
\(475\) −7.98064e27 −0.626260
\(476\) 0 0
\(477\) −1.10122e28 −0.826861
\(478\) 0 0
\(479\) 1.30805e28 0.939946 0.469973 0.882681i \(-0.344264\pi\)
0.469973 + 0.882681i \(0.344264\pi\)
\(480\) 0 0
\(481\) 1.16068e28 0.798343
\(482\) 0 0
\(483\) 8.94982e27 0.589345
\(484\) 0 0
\(485\) 1.63283e28 1.02956
\(486\) 0 0
\(487\) 1.68131e28 1.01530 0.507650 0.861564i \(-0.330514\pi\)
0.507650 + 0.861564i \(0.330514\pi\)
\(488\) 0 0
\(489\) −1.69192e28 −0.978673
\(490\) 0 0
\(491\) 2.67382e28 1.48175 0.740877 0.671641i \(-0.234410\pi\)
0.740877 + 0.671641i \(0.234410\pi\)
\(492\) 0 0
\(493\) −2.39122e27 −0.126978
\(494\) 0 0
\(495\) −1.32725e28 −0.675457
\(496\) 0 0
\(497\) 3.86201e27 0.188396
\(498\) 0 0
\(499\) −1.92819e28 −0.901765 −0.450882 0.892583i \(-0.648891\pi\)
−0.450882 + 0.892583i \(0.648891\pi\)
\(500\) 0 0
\(501\) −2.25884e28 −1.01296
\(502\) 0 0
\(503\) −2.46340e27 −0.105943 −0.0529714 0.998596i \(-0.516869\pi\)
−0.0529714 + 0.998596i \(0.516869\pi\)
\(504\) 0 0
\(505\) 7.60520e27 0.313726
\(506\) 0 0
\(507\) −3.97072e28 −1.57140
\(508\) 0 0
\(509\) 2.34782e28 0.891513 0.445757 0.895154i \(-0.352935\pi\)
0.445757 + 0.895154i \(0.352935\pi\)
\(510\) 0 0
\(511\) −2.18176e28 −0.795038
\(512\) 0 0
\(513\) −2.60470e28 −0.911016
\(514\) 0 0
\(515\) 4.34118e28 1.45758
\(516\) 0 0
\(517\) −3.90283e28 −1.25814
\(518\) 0 0
\(519\) −2.92397e28 −0.905141
\(520\) 0 0
\(521\) 5.65820e28 1.68222 0.841109 0.540865i \(-0.181903\pi\)
0.841109 + 0.540865i \(0.181903\pi\)
\(522\) 0 0
\(523\) 2.74538e28 0.784033 0.392016 0.919958i \(-0.371778\pi\)
0.392016 + 0.919958i \(0.371778\pi\)
\(524\) 0 0
\(525\) −2.11683e28 −0.580783
\(526\) 0 0
\(527\) 1.02505e28 0.270229
\(528\) 0 0
\(529\) −1.80106e28 −0.456293
\(530\) 0 0
\(531\) −2.01622e28 −0.490960
\(532\) 0 0
\(533\) −4.09294e28 −0.958075
\(534\) 0 0
\(535\) −5.12378e28 −1.15312
\(536\) 0 0
\(537\) 5.66778e28 1.22654
\(538\) 0 0
\(539\) −1.46930e28 −0.305794
\(540\) 0 0
\(541\) −1.54302e28 −0.308888 −0.154444 0.988002i \(-0.549359\pi\)
−0.154444 + 0.988002i \(0.549359\pi\)
\(542\) 0 0
\(543\) 3.38726e28 0.652305
\(544\) 0 0
\(545\) −9.58069e28 −1.77514
\(546\) 0 0
\(547\) −8.66492e27 −0.154489 −0.0772445 0.997012i \(-0.524612\pi\)
−0.0772445 + 0.997012i \(0.524612\pi\)
\(548\) 0 0
\(549\) 4.06381e28 0.697307
\(550\) 0 0
\(551\) 1.69070e28 0.279238
\(552\) 0 0
\(553\) −8.47541e28 −1.34756
\(554\) 0 0
\(555\) −2.66353e28 −0.407738
\(556\) 0 0
\(557\) 1.12653e29 1.66060 0.830300 0.557317i \(-0.188169\pi\)
0.830300 + 0.557317i \(0.188169\pi\)
\(558\) 0 0
\(559\) −2.15537e28 −0.305983
\(560\) 0 0
\(561\) 2.02305e28 0.276628
\(562\) 0 0
\(563\) 1.30345e29 1.71695 0.858475 0.512856i \(-0.171412\pi\)
0.858475 + 0.512856i \(0.171412\pi\)
\(564\) 0 0
\(565\) 8.74333e28 1.10960
\(566\) 0 0
\(567\) −2.14908e28 −0.262803
\(568\) 0 0
\(569\) 1.64552e29 1.93921 0.969606 0.244671i \(-0.0786800\pi\)
0.969606 + 0.244671i \(0.0786800\pi\)
\(570\) 0 0
\(571\) 9.69589e28 1.10131 0.550654 0.834734i \(-0.314378\pi\)
0.550654 + 0.834734i \(0.314378\pi\)
\(572\) 0 0
\(573\) −3.06436e28 −0.335519
\(574\) 0 0
\(575\) −5.07601e28 −0.535809
\(576\) 0 0
\(577\) 1.25423e28 0.127653 0.0638263 0.997961i \(-0.479670\pi\)
0.0638263 + 0.997961i \(0.479670\pi\)
\(578\) 0 0
\(579\) 1.34956e29 1.32455
\(580\) 0 0
\(581\) −2.52393e27 −0.0238906
\(582\) 0 0
\(583\) −1.79086e29 −1.63509
\(584\) 0 0
\(585\) −1.37012e29 −1.20676
\(586\) 0 0
\(587\) 2.13236e29 1.81201 0.906003 0.423271i \(-0.139118\pi\)
0.906003 + 0.423271i \(0.139118\pi\)
\(588\) 0 0
\(589\) −7.24754e28 −0.594265
\(590\) 0 0
\(591\) −5.96043e27 −0.0471638
\(592\) 0 0
\(593\) 5.74182e28 0.438506 0.219253 0.975668i \(-0.429638\pi\)
0.219253 + 0.975668i \(0.429638\pi\)
\(594\) 0 0
\(595\) −7.97504e28 −0.587902
\(596\) 0 0
\(597\) −6.31157e28 −0.449166
\(598\) 0 0
\(599\) 1.18461e28 0.0813941 0.0406970 0.999172i \(-0.487042\pi\)
0.0406970 + 0.999172i \(0.487042\pi\)
\(600\) 0 0
\(601\) 1.60567e28 0.106531 0.0532653 0.998580i \(-0.483037\pi\)
0.0532653 + 0.998580i \(0.483037\pi\)
\(602\) 0 0
\(603\) −1.00217e29 −0.642113
\(604\) 0 0
\(605\) −3.50200e27 −0.0216713
\(606\) 0 0
\(607\) −9.90701e28 −0.592190 −0.296095 0.955158i \(-0.595685\pi\)
−0.296095 + 0.955158i \(0.595685\pi\)
\(608\) 0 0
\(609\) 4.48452e28 0.258961
\(610\) 0 0
\(611\) −4.02888e29 −2.24777
\(612\) 0 0
\(613\) 1.45877e29 0.786416 0.393208 0.919450i \(-0.371365\pi\)
0.393208 + 0.919450i \(0.371365\pi\)
\(614\) 0 0
\(615\) 9.39248e28 0.489318
\(616\) 0 0
\(617\) −9.52438e28 −0.479560 −0.239780 0.970827i \(-0.577075\pi\)
−0.239780 + 0.970827i \(0.577075\pi\)
\(618\) 0 0
\(619\) 3.36526e29 1.63782 0.818911 0.573921i \(-0.194578\pi\)
0.818911 + 0.573921i \(0.194578\pi\)
\(620\) 0 0
\(621\) −1.65670e29 −0.779437
\(622\) 0 0
\(623\) 1.01363e29 0.461057
\(624\) 0 0
\(625\) −2.72537e29 −1.19863
\(626\) 0 0
\(627\) −1.43039e29 −0.608336
\(628\) 0 0
\(629\) −4.22305e28 −0.173698
\(630\) 0 0
\(631\) −8.77108e27 −0.0348935 −0.0174468 0.999848i \(-0.505554\pi\)
−0.0174468 + 0.999848i \(0.505554\pi\)
\(632\) 0 0
\(633\) 2.71920e29 1.04641
\(634\) 0 0
\(635\) −2.02199e29 −0.752758
\(636\) 0 0
\(637\) −1.51675e29 −0.546325
\(638\) 0 0
\(639\) −2.41408e28 −0.0841379
\(640\) 0 0
\(641\) 4.29903e28 0.144998 0.0724988 0.997368i \(-0.476903\pi\)
0.0724988 + 0.997368i \(0.476903\pi\)
\(642\) 0 0
\(643\) −4.61999e28 −0.150809 −0.0754043 0.997153i \(-0.524025\pi\)
−0.0754043 + 0.997153i \(0.524025\pi\)
\(644\) 0 0
\(645\) 4.94614e28 0.156275
\(646\) 0 0
\(647\) 4.54118e28 0.138891 0.0694455 0.997586i \(-0.477877\pi\)
0.0694455 + 0.997586i \(0.477877\pi\)
\(648\) 0 0
\(649\) −3.27887e29 −0.970856
\(650\) 0 0
\(651\) −1.92238e29 −0.551111
\(652\) 0 0
\(653\) −1.64556e29 −0.456799 −0.228400 0.973567i \(-0.573349\pi\)
−0.228400 + 0.973567i \(0.573349\pi\)
\(654\) 0 0
\(655\) 2.70521e29 0.727223
\(656\) 0 0
\(657\) 1.36378e29 0.355066
\(658\) 0 0
\(659\) −2.21390e29 −0.558291 −0.279146 0.960249i \(-0.590051\pi\)
−0.279146 + 0.960249i \(0.590051\pi\)
\(660\) 0 0
\(661\) 2.54395e29 0.621431 0.310716 0.950503i \(-0.399431\pi\)
0.310716 + 0.950503i \(0.399431\pi\)
\(662\) 0 0
\(663\) 2.08839e29 0.494218
\(664\) 0 0
\(665\) 5.63872e29 1.29286
\(666\) 0 0
\(667\) 1.07535e29 0.238908
\(668\) 0 0
\(669\) −2.80695e29 −0.604312
\(670\) 0 0
\(671\) 6.60875e29 1.37890
\(672\) 0 0
\(673\) 7.99394e29 1.61660 0.808300 0.588770i \(-0.200388\pi\)
0.808300 + 0.588770i \(0.200388\pi\)
\(674\) 0 0
\(675\) 3.91846e29 0.768114
\(676\) 0 0
\(677\) 4.61947e29 0.877831 0.438916 0.898528i \(-0.355363\pi\)
0.438916 + 0.898528i \(0.355363\pi\)
\(678\) 0 0
\(679\) −4.85517e29 −0.894483
\(680\) 0 0
\(681\) −8.03207e28 −0.143477
\(682\) 0 0
\(683\) −3.35857e29 −0.581751 −0.290876 0.956761i \(-0.593947\pi\)
−0.290876 + 0.956761i \(0.593947\pi\)
\(684\) 0 0
\(685\) 5.78906e28 0.0972428
\(686\) 0 0
\(687\) −2.71599e28 −0.0442469
\(688\) 0 0
\(689\) −1.84870e30 −2.92122
\(690\) 0 0
\(691\) 4.41273e29 0.676376 0.338188 0.941079i \(-0.390186\pi\)
0.338188 + 0.941079i \(0.390186\pi\)
\(692\) 0 0
\(693\) 3.94654e29 0.586838
\(694\) 0 0
\(695\) 9.71722e29 1.40185
\(696\) 0 0
\(697\) 1.48919e29 0.208451
\(698\) 0 0
\(699\) −2.88574e29 −0.391965
\(700\) 0 0
\(701\) 1.23969e29 0.163408 0.0817040 0.996657i \(-0.473964\pi\)
0.0817040 + 0.996657i \(0.473964\pi\)
\(702\) 0 0
\(703\) 2.98589e29 0.381982
\(704\) 0 0
\(705\) 9.24548e29 1.14801
\(706\) 0 0
\(707\) −2.26139e29 −0.272566
\(708\) 0 0
\(709\) 1.27607e30 1.49311 0.746553 0.665326i \(-0.231708\pi\)
0.746553 + 0.665326i \(0.231708\pi\)
\(710\) 0 0
\(711\) 5.29783e29 0.601821
\(712\) 0 0
\(713\) −4.60973e29 −0.508435
\(714\) 0 0
\(715\) −2.22814e30 −2.38632
\(716\) 0 0
\(717\) −1.25465e30 −1.30488
\(718\) 0 0
\(719\) −1.07039e30 −1.08116 −0.540580 0.841293i \(-0.681795\pi\)
−0.540580 + 0.841293i \(0.681795\pi\)
\(720\) 0 0
\(721\) −1.29084e30 −1.26635
\(722\) 0 0
\(723\) −6.83971e29 −0.651757
\(724\) 0 0
\(725\) −2.54345e29 −0.235437
\(726\) 0 0
\(727\) 7.64279e29 0.687291 0.343645 0.939100i \(-0.388338\pi\)
0.343645 + 0.939100i \(0.388338\pi\)
\(728\) 0 0
\(729\) 9.81370e29 0.857420
\(730\) 0 0
\(731\) 7.84214e28 0.0665736
\(732\) 0 0
\(733\) −1.18755e30 −0.979629 −0.489814 0.871827i \(-0.662935\pi\)
−0.489814 + 0.871827i \(0.662935\pi\)
\(734\) 0 0
\(735\) 3.48065e29 0.279025
\(736\) 0 0
\(737\) −1.62978e30 −1.26976
\(738\) 0 0
\(739\) −1.62225e29 −0.122843 −0.0614217 0.998112i \(-0.519563\pi\)
−0.0614217 + 0.998112i \(0.519563\pi\)
\(740\) 0 0
\(741\) −1.47658e30 −1.08684
\(742\) 0 0
\(743\) −1.09499e30 −0.783478 −0.391739 0.920076i \(-0.628126\pi\)
−0.391739 + 0.920076i \(0.628126\pi\)
\(744\) 0 0
\(745\) 9.77883e29 0.680214
\(746\) 0 0
\(747\) 1.57766e28 0.0106696
\(748\) 0 0
\(749\) 1.52354e30 1.00183
\(750\) 0 0
\(751\) 1.43876e30 0.919962 0.459981 0.887929i \(-0.347856\pi\)
0.459981 + 0.887929i \(0.347856\pi\)
\(752\) 0 0
\(753\) 4.50858e29 0.280345
\(754\) 0 0
\(755\) 6.85369e29 0.414459
\(756\) 0 0
\(757\) 2.13374e29 0.125498 0.0627488 0.998029i \(-0.480013\pi\)
0.0627488 + 0.998029i \(0.480013\pi\)
\(758\) 0 0
\(759\) −9.09782e29 −0.520474
\(760\) 0 0
\(761\) 3.15854e30 1.75771 0.878857 0.477086i \(-0.158307\pi\)
0.878857 + 0.477086i \(0.158307\pi\)
\(762\) 0 0
\(763\) 2.84879e30 1.54225
\(764\) 0 0
\(765\) 4.98506e29 0.262558
\(766\) 0 0
\(767\) −3.38477e30 −1.73451
\(768\) 0 0
\(769\) −1.20266e30 −0.599675 −0.299838 0.953990i \(-0.596933\pi\)
−0.299838 + 0.953990i \(0.596933\pi\)
\(770\) 0 0
\(771\) 1.04003e30 0.504633
\(772\) 0 0
\(773\) −2.33922e30 −1.10455 −0.552277 0.833661i \(-0.686241\pi\)
−0.552277 + 0.833661i \(0.686241\pi\)
\(774\) 0 0
\(775\) 1.09030e30 0.501049
\(776\) 0 0
\(777\) 7.91994e29 0.354243
\(778\) 0 0
\(779\) −1.05292e30 −0.458408
\(780\) 0 0
\(781\) −3.92588e29 −0.166380
\(782\) 0 0
\(783\) −8.30127e29 −0.342488
\(784\) 0 0
\(785\) −3.65314e30 −1.46736
\(786\) 0 0
\(787\) 1.29344e30 0.505838 0.252919 0.967487i \(-0.418609\pi\)
0.252919 + 0.967487i \(0.418609\pi\)
\(788\) 0 0
\(789\) 2.96032e30 1.12728
\(790\) 0 0
\(791\) −2.59981e30 −0.964025
\(792\) 0 0
\(793\) 6.82220e30 2.46352
\(794\) 0 0
\(795\) 4.24239e30 1.49196
\(796\) 0 0
\(797\) −4.15582e29 −0.142346 −0.0711729 0.997464i \(-0.522674\pi\)
−0.0711729 + 0.997464i \(0.522674\pi\)
\(798\) 0 0
\(799\) 1.46588e30 0.489054
\(800\) 0 0
\(801\) −6.33602e29 −0.205909
\(802\) 0 0
\(803\) 2.21784e30 0.702130
\(804\) 0 0
\(805\) 3.58645e30 1.10613
\(806\) 0 0
\(807\) 3.71471e30 1.11623
\(808\) 0 0
\(809\) −6.34707e30 −1.85829 −0.929146 0.369713i \(-0.879456\pi\)
−0.929146 + 0.369713i \(0.879456\pi\)
\(810\) 0 0
\(811\) 1.03289e30 0.294669 0.147335 0.989087i \(-0.452931\pi\)
0.147335 + 0.989087i \(0.452931\pi\)
\(812\) 0 0
\(813\) −1.68655e30 −0.468865
\(814\) 0 0
\(815\) −6.78002e30 −1.83686
\(816\) 0 0
\(817\) −5.54475e29 −0.146403
\(818\) 0 0
\(819\) 4.07400e30 1.04843
\(820\) 0 0
\(821\) 5.48361e30 1.37551 0.687755 0.725943i \(-0.258596\pi\)
0.687755 + 0.725943i \(0.258596\pi\)
\(822\) 0 0
\(823\) −1.50751e30 −0.368605 −0.184302 0.982870i \(-0.559003\pi\)
−0.184302 + 0.982870i \(0.559003\pi\)
\(824\) 0 0
\(825\) 2.15184e30 0.512913
\(826\) 0 0
\(827\) −3.24916e30 −0.755027 −0.377514 0.926004i \(-0.623221\pi\)
−0.377514 + 0.926004i \(0.623221\pi\)
\(828\) 0 0
\(829\) −3.88679e30 −0.880579 −0.440290 0.897856i \(-0.645124\pi\)
−0.440290 + 0.897856i \(0.645124\pi\)
\(830\) 0 0
\(831\) −3.78815e30 −0.836789
\(832\) 0 0
\(833\) 5.51859e29 0.118866
\(834\) 0 0
\(835\) −9.05184e30 −1.90120
\(836\) 0 0
\(837\) 3.55851e30 0.728871
\(838\) 0 0
\(839\) 4.76500e30 0.951836 0.475918 0.879490i \(-0.342116\pi\)
0.475918 + 0.879490i \(0.342116\pi\)
\(840\) 0 0
\(841\) −4.59401e30 −0.895023
\(842\) 0 0
\(843\) −1.56041e30 −0.296516
\(844\) 0 0
\(845\) −1.59118e31 −2.94934
\(846\) 0 0
\(847\) 1.04131e29 0.0188281
\(848\) 0 0
\(849\) −3.86120e29 −0.0681069
\(850\) 0 0
\(851\) 1.89914e30 0.326811
\(852\) 0 0
\(853\) 2.09705e30 0.352083 0.176041 0.984383i \(-0.443671\pi\)
0.176041 + 0.984383i \(0.443671\pi\)
\(854\) 0 0
\(855\) −3.52466e30 −0.577396
\(856\) 0 0
\(857\) 5.93597e30 0.948840 0.474420 0.880299i \(-0.342658\pi\)
0.474420 + 0.880299i \(0.342658\pi\)
\(858\) 0 0
\(859\) 2.89046e30 0.450856 0.225428 0.974260i \(-0.427622\pi\)
0.225428 + 0.974260i \(0.427622\pi\)
\(860\) 0 0
\(861\) −2.79283e30 −0.425120
\(862\) 0 0
\(863\) 5.57344e30 0.827961 0.413981 0.910286i \(-0.364138\pi\)
0.413981 + 0.910286i \(0.364138\pi\)
\(864\) 0 0
\(865\) −1.17172e31 −1.69885
\(866\) 0 0
\(867\) 4.18742e30 0.592578
\(868\) 0 0
\(869\) 8.61557e30 1.19008
\(870\) 0 0
\(871\) −1.68242e31 −2.26852
\(872\) 0 0
\(873\) 3.03489e30 0.399478
\(874\) 0 0
\(875\) 3.19098e30 0.410052
\(876\) 0 0
\(877\) 3.23623e30 0.406016 0.203008 0.979177i \(-0.434928\pi\)
0.203008 + 0.979177i \(0.434928\pi\)
\(878\) 0 0
\(879\) −2.81366e30 −0.344658
\(880\) 0 0
\(881\) 3.38000e30 0.404268 0.202134 0.979358i \(-0.435212\pi\)
0.202134 + 0.979358i \(0.435212\pi\)
\(882\) 0 0
\(883\) 4.75979e30 0.555904 0.277952 0.960595i \(-0.410344\pi\)
0.277952 + 0.960595i \(0.410344\pi\)
\(884\) 0 0
\(885\) 7.76737e30 0.885869
\(886\) 0 0
\(887\) −4.28065e30 −0.476773 −0.238387 0.971170i \(-0.576619\pi\)
−0.238387 + 0.971170i \(0.576619\pi\)
\(888\) 0 0
\(889\) 6.01235e30 0.653997
\(890\) 0 0
\(891\) 2.18462e30 0.232092
\(892\) 0 0
\(893\) −1.03644e31 −1.07549
\(894\) 0 0
\(895\) 2.27124e31 2.30209
\(896\) 0 0
\(897\) −9.39166e30 −0.929868
\(898\) 0 0
\(899\) −2.30981e30 −0.223409
\(900\) 0 0
\(901\) 6.72635e30 0.635578
\(902\) 0 0
\(903\) −1.47072e30 −0.135772
\(904\) 0 0
\(905\) 1.35737e31 1.22430
\(906\) 0 0
\(907\) −4.03498e30 −0.355602 −0.177801 0.984066i \(-0.556898\pi\)
−0.177801 + 0.984066i \(0.556898\pi\)
\(908\) 0 0
\(909\) 1.41355e30 0.121728
\(910\) 0 0
\(911\) 1.00965e31 0.849623 0.424812 0.905282i \(-0.360340\pi\)
0.424812 + 0.905282i \(0.360340\pi\)
\(912\) 0 0
\(913\) 2.56566e29 0.0210987
\(914\) 0 0
\(915\) −1.56556e31 −1.25819
\(916\) 0 0
\(917\) −8.04388e30 −0.631811
\(918\) 0 0
\(919\) 2.04869e31 1.57277 0.786383 0.617739i \(-0.211951\pi\)
0.786383 + 0.617739i \(0.211951\pi\)
\(920\) 0 0
\(921\) 8.86653e30 0.665315
\(922\) 0 0
\(923\) −4.05267e30 −0.297251
\(924\) 0 0
\(925\) −4.49190e30 −0.322064
\(926\) 0 0
\(927\) 8.06882e30 0.565552
\(928\) 0 0
\(929\) 1.15155e31 0.789072 0.394536 0.918880i \(-0.370905\pi\)
0.394536 + 0.918880i \(0.370905\pi\)
\(930\) 0 0
\(931\) −3.90189e30 −0.261399
\(932\) 0 0
\(933\) −1.13500e31 −0.743431
\(934\) 0 0
\(935\) 8.10693e30 0.519200
\(936\) 0 0
\(937\) 1.40172e31 0.877801 0.438900 0.898536i \(-0.355368\pi\)
0.438900 + 0.898536i \(0.355368\pi\)
\(938\) 0 0
\(939\) −8.29758e30 −0.508116
\(940\) 0 0
\(941\) −9.63512e30 −0.576987 −0.288493 0.957482i \(-0.593154\pi\)
−0.288493 + 0.957482i \(0.593154\pi\)
\(942\) 0 0
\(943\) −6.69700e30 −0.392200
\(944\) 0 0
\(945\) −2.76858e31 −1.58571
\(946\) 0 0
\(947\) −1.70818e31 −0.956880 −0.478440 0.878120i \(-0.658798\pi\)
−0.478440 + 0.878120i \(0.658798\pi\)
\(948\) 0 0
\(949\) 2.28947e31 1.25441
\(950\) 0 0
\(951\) 3.65007e30 0.195617
\(952\) 0 0
\(953\) −1.43239e31 −0.750904 −0.375452 0.926842i \(-0.622513\pi\)
−0.375452 + 0.926842i \(0.622513\pi\)
\(954\) 0 0
\(955\) −1.22798e31 −0.629731
\(956\) 0 0
\(957\) −4.55868e30 −0.228699
\(958\) 0 0
\(959\) −1.72136e30 −0.0844846
\(960\) 0 0
\(961\) −1.09240e31 −0.524550
\(962\) 0 0
\(963\) −9.52340e30 −0.447421
\(964\) 0 0
\(965\) 5.40809e31 2.48603
\(966\) 0 0
\(967\) −1.43951e31 −0.647493 −0.323747 0.946144i \(-0.604943\pi\)
−0.323747 + 0.946144i \(0.604943\pi\)
\(968\) 0 0
\(969\) 5.37243e30 0.236467
\(970\) 0 0
\(971\) 2.67107e31 1.15049 0.575245 0.817981i \(-0.304907\pi\)
0.575245 + 0.817981i \(0.304907\pi\)
\(972\) 0 0
\(973\) −2.88939e31 −1.21793
\(974\) 0 0
\(975\) 2.22134e31 0.916360
\(976\) 0 0
\(977\) −3.63714e31 −1.46848 −0.734238 0.678892i \(-0.762460\pi\)
−0.734238 + 0.678892i \(0.762460\pi\)
\(978\) 0 0
\(979\) −1.03039e31 −0.407178
\(980\) 0 0
\(981\) −1.78073e31 −0.688770
\(982\) 0 0
\(983\) 2.81078e31 1.06418 0.532089 0.846688i \(-0.321407\pi\)
0.532089 + 0.846688i \(0.321407\pi\)
\(984\) 0 0
\(985\) −2.38851e30 −0.0885212
\(986\) 0 0
\(987\) −2.74912e31 −0.997388
\(988\) 0 0
\(989\) −3.52668e30 −0.125258
\(990\) 0 0
\(991\) −3.20038e31 −1.11283 −0.556413 0.830906i \(-0.687823\pi\)
−0.556413 + 0.830906i \(0.687823\pi\)
\(992\) 0 0
\(993\) −3.32339e31 −1.13139
\(994\) 0 0
\(995\) −2.52923e31 −0.843035
\(996\) 0 0
\(997\) −4.21028e31 −1.37408 −0.687040 0.726620i \(-0.741090\pi\)
−0.687040 + 0.726620i \(0.741090\pi\)
\(998\) 0 0
\(999\) −1.46606e31 −0.468504
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 16.22.a.a.1.1 1
4.3 odd 2 2.22.a.a.1.1 1
8.3 odd 2 64.22.a.b.1.1 1
8.5 even 2 64.22.a.f.1.1 1
12.11 even 2 18.22.a.e.1.1 1
20.3 even 4 50.22.b.a.49.2 2
20.7 even 4 50.22.b.a.49.1 2
20.19 odd 2 50.22.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.22.a.a.1.1 1 4.3 odd 2
16.22.a.a.1.1 1 1.1 even 1 trivial
18.22.a.e.1.1 1 12.11 even 2
50.22.a.c.1.1 1 20.19 odd 2
50.22.b.a.49.1 2 20.7 even 4
50.22.b.a.49.2 2 20.3 even 4
64.22.a.b.1.1 1 8.3 odd 2
64.22.a.f.1.1 1 8.5 even 2