Properties

Label 16.22.a
Level $16$
Weight $22$
Character orbit 16.a
Rep. character $\chi_{16}(1,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $6$
Sturm bound $44$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(44\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(16))\).

Total New Old
Modular forms 45 11 34
Cusp forms 39 10 29
Eisenstein series 6 1 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(22\)\(5\)\(17\)\(19\)\(5\)\(14\)\(3\)\(0\)\(3\)
\(-\)\(23\)\(6\)\(17\)\(20\)\(5\)\(15\)\(3\)\(1\)\(2\)

Trace form

\( 10 q - 59048 q^{3} - 10391780 q^{5} - 286396624 q^{7} + 36243817378 q^{9} - 44145613432 q^{11} - 53827631700 q^{13} - 409034126192 q^{15} - 1849642826188 q^{17} - 64445589026888 q^{19} - 6335038461120 q^{21}+ \cdots - 77\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(16))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
16.22.a.a 16.a 1.a $1$ $44.716$ \(\Q\) None 2.22.a.a \(0\) \(-71604\) \(-28693770\) \(853202392\) $-$ $\mathrm{SU}(2)$ \(q-71604q^{3}-28693770q^{5}+853202392q^{7}+\cdots\)
16.22.a.b 16.a 1.a $1$ $44.716$ \(\Q\) None 2.22.a.b \(0\) \(-59316\) \(4975350\) \(-1427425832\) $-$ $\mathrm{SU}(2)$ \(q-59316q^{3}+4975350q^{5}-1427425832q^{7}+\cdots\)
16.22.a.c 16.a 1.a $1$ $44.716$ \(\Q\) None 1.22.a.a \(0\) \(128844\) \(21640950\) \(768078808\) $-$ $\mathrm{SU}(2)$ \(q+128844q^{3}+21640950q^{5}+768078808q^{7}+\cdots\)
16.22.a.d 16.a 1.a $2$ $44.716$ \(\Q(\sqrt{2161}) \) None 4.22.a.a \(0\) \(-65640\) \(13689324\) \(260508080\) $-$ $\mathrm{SU}(2)$ \(q+(-32820-\beta )q^{3}+(6844662+204\beta )q^{5}+\cdots\)
16.22.a.e 16.a 1.a $2$ $44.716$ \(\Q(\sqrt{358549}) \) None 8.22.a.a \(0\) \(105432\) \(2108140\) \(-444771792\) $+$ $\mathrm{SU}(2)$ \(q+(52716-\beta )q^{3}+(1054070-20\beta )q^{5}+\cdots\)
16.22.a.f 16.a 1.a $3$ $44.716$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 8.22.a.b \(0\) \(-96764\) \(-24111774\) \(-295988280\) $+$ $\mathrm{SU}(2)$ \(q+(-32255+\beta _{1})q^{3}+(-8037261+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(16))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_0(16)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)