Properties

Label 16.2.e
Level $16$
Weight $2$
Character orbit 16.e
Rep. character $\chi_{16}(5,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $2$
Newform subspaces $1$
Sturm bound $4$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 16.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(4\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(16, [\chi])\).

Total New Old
Modular forms 6 6 0
Cusp forms 2 2 0
Eisenstein series 4 4 0

Trace form

\( 2q - 2q^{2} - 2q^{3} - 2q^{5} + 4q^{6} + 4q^{8} + O(q^{10}) \) \( 2q - 2q^{2} - 2q^{3} - 2q^{5} + 4q^{6} + 4q^{8} + 2q^{11} - 4q^{12} - 2q^{13} - 4q^{14} + 4q^{15} - 8q^{16} - 4q^{17} + 2q^{18} + 6q^{19} + 4q^{20} + 4q^{21} + 4q^{26} - 8q^{27} + 8q^{28} + 6q^{29} - 4q^{30} - 16q^{31} + 8q^{32} - 4q^{33} + 4q^{34} - 4q^{35} - 4q^{36} + 6q^{37} - 12q^{38} - 8q^{40} + 10q^{43} - 4q^{44} + 2q^{45} + 12q^{46} + 16q^{47} + 8q^{48} + 6q^{49} - 6q^{50} + 4q^{51} - 4q^{52} - 10q^{53} - 8q^{56} - 12q^{58} - 6q^{59} - 18q^{61} + 16q^{62} + 4q^{63} + 4q^{65} + 4q^{66} - 10q^{67} - 12q^{69} + 8q^{70} + 4q^{72} + 6q^{75} + 12q^{76} + 4q^{77} - 4q^{78} + 8q^{80} + 10q^{81} - 2q^{83} - 8q^{84} + 4q^{85} + 8q^{88} - 4q^{90} + 4q^{91} - 24q^{92} + 16q^{93} - 16q^{94} - 12q^{95} - 16q^{96} - 4q^{97} - 6q^{98} - 2q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(16, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
16.2.e.a \(2\) \(0.128\) \(\Q(\sqrt{-1}) \) None \(-2\) \(-2\) \(-2\) \(0\) \(q+(-1-i)q^{2}+(-1+i)q^{3}+2iq^{4}+\cdots\)