Properties

Label 16.2.e
Level $16$
Weight $2$
Character orbit 16.e
Rep. character $\chi_{16}(5,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $2$
Newform subspaces $1$
Sturm bound $4$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 16.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(4\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(16, [\chi])\).

Total New Old
Modular forms 6 6 0
Cusp forms 2 2 0
Eisenstein series 4 4 0

Trace form

\( 2 q - 2 q^{2} - 2 q^{3} - 2 q^{5} + 4 q^{6} + 4 q^{8} + 2 q^{11} - 4 q^{12} - 2 q^{13} - 4 q^{14} + 4 q^{15} - 8 q^{16} - 4 q^{17} + 2 q^{18} + 6 q^{19} + 4 q^{20} + 4 q^{21} + 4 q^{26} - 8 q^{27} + 8 q^{28}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(16, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
16.2.e.a 16.e 16.e $2$ $0.128$ \(\Q(\sqrt{-1}) \) None 16.2.e.a \(-2\) \(-2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+(i-1)q^{3}+2 i q^{4}+\cdots\)