Properties

Label 16.14
Level 16
Weight 14
Dimension 56
Nonzero newspaces 2
Newform subspaces 6
Sturm bound 224
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 6 \)
Sturm bound: \(224\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(16))\).

Total New Old
Modular forms 111 61 50
Cusp forms 97 56 41
Eisenstein series 14 5 9

Trace form

\( 56 q - 2 q^{2} - 730 q^{3} + 360 q^{4} + 16898 q^{5} - 255056 q^{6} + 65232 q^{7} - 1076876 q^{8} + 2329966 q^{9} + 1809804 q^{10} - 12400678 q^{11} - 36466556 q^{12} + 8510578 q^{13} - 32192740 q^{14}+ \cdots - 35014268425898 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(16))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
16.14.a \(\chi_{16}(1, \cdot)\) 16.14.a.a 1 1
16.14.a.b 1
16.14.a.c 1
16.14.a.d 1
16.14.a.e 2
16.14.b \(\chi_{16}(9, \cdot)\) None 0 1
16.14.e \(\chi_{16}(5, \cdot)\) 16.14.e.a 50 2

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(16))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_1(16)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)