Properties

Label 16.12.a.c
Level 16
Weight 12
Character orbit 16.a
Self dual Yes
Analytic conductor 12.293
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 12 \)
Character orbit: \([\chi]\) = 16.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(12.293490889\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 516q^{3} - 10530q^{5} - 49304q^{7} + 89109q^{9} + O(q^{10}) \) \( q + 516q^{3} - 10530q^{5} - 49304q^{7} + 89109q^{9} + 309420q^{11} - 1723594q^{13} - 5433480q^{15} - 2279502q^{17} - 4550444q^{19} - 25440864q^{21} + 7282872q^{23} + 62052775q^{25} - 45427608q^{27} - 69040026q^{29} + 141740704q^{31} + 159660720q^{33} + 519171120q^{35} + 711366974q^{37} - 889374504q^{39} - 1225262214q^{41} + 33606220q^{43} - 938317770q^{45} - 123214608q^{47} + 453557673q^{49} - 1176223032q^{51} + 1106121582q^{53} - 3258192600q^{55} - 2348029104q^{57} + 9062779932q^{59} - 3854150458q^{61} - 4393430136q^{63} + 18149444820q^{65} + 15313764676q^{67} + 3757961952q^{69} - 20619626328q^{71} - 2063718694q^{73} + 32019231900q^{75} - 15255643680q^{77} - 13689871472q^{79} - 39226037751q^{81} - 65570428908q^{83} + 24003156060q^{85} - 35624653416q^{87} - 29715508854q^{89} + 84980078576q^{91} + 73138203264q^{93} + 47916175320q^{95} - 23439626206q^{97} + 27572106780q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 516.000 0 −10530.0 0 −49304.0 0 89109.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{3} - 516 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(16))\).