Properties

Label 16.10.a
Level $16$
Weight $10$
Character orbit 16.a
Rep. character $\chi_{16}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $4$
Sturm bound $20$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(20\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(16))\).

Total New Old
Modular forms 21 5 16
Cusp forms 15 4 11
Eisenstein series 6 1 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(10\)\(2\)\(8\)\(7\)\(2\)\(5\)\(3\)\(0\)\(3\)
\(-\)\(11\)\(3\)\(8\)\(8\)\(2\)\(6\)\(3\)\(1\)\(2\)

Trace form

\( 4 q - 80 q^{3} - 360 q^{5} + 1376 q^{7} + 5812 q^{9} - 10992 q^{11} - 43080 q^{13} + 60448 q^{15} + 172104 q^{17} - 296336 q^{19} - 336768 q^{21} + 1349664 q^{23} - 30468 q^{25} - 5005088 q^{27} + 1723896 q^{29}+ \cdots + 2808900560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(16))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
16.10.a.a 16.a 1.a $1$ $8.241$ \(\Q\) None 4.10.a.a \(0\) \(-228\) \(-666\) \(6328\) $-$ $\mathrm{SU}(2)$ \(q-228q^{3}-666q^{5}+6328q^{7}+32301q^{9}+\cdots\)
16.10.a.b 16.a 1.a $1$ $8.241$ \(\Q\) None 8.10.a.b \(0\) \(-68\) \(1510\) \(-10248\) $+$ $\mathrm{SU}(2)$ \(q-68q^{3}+1510q^{5}-10248q^{7}-15059q^{9}+\cdots\)
16.10.a.c 16.a 1.a $1$ $8.241$ \(\Q\) None 8.10.a.a \(0\) \(60\) \(-2074\) \(4344\) $+$ $\mathrm{SU}(2)$ \(q+60q^{3}-2074q^{5}+4344q^{7}-16083q^{9}+\cdots\)
16.10.a.d 16.a 1.a $1$ $8.241$ \(\Q\) None 2.10.a.a \(0\) \(156\) \(870\) \(952\) $-$ $\mathrm{SU}(2)$ \(q+156q^{3}+870q^{5}+952q^{7}+4653q^{9}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(16))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(16)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)