Properties

Label 1587.4.a.o.1.2
Level $1587$
Weight $4$
Character 1587.1
Self dual yes
Analytic conductor $93.636$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1587,4,Mod(1,1587)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1587.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1587, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,21,38,10,0,-17,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.6360311791\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 47x^{5} - 12x^{4} + 574x^{3} + 240x^{2} - 1436x + 720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.10851\) of defining polynomial
Character \(\chi\) \(=\) 1587.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.10851 q^{2} +3.00000 q^{3} +8.87983 q^{4} -17.1413 q^{5} -12.3255 q^{6} -4.94950 q^{7} -3.61478 q^{8} +9.00000 q^{9} +70.4253 q^{10} -3.96314 q^{11} +26.6395 q^{12} +87.8982 q^{13} +20.3351 q^{14} -51.4240 q^{15} -56.1873 q^{16} -129.439 q^{17} -36.9766 q^{18} +37.7444 q^{19} -152.212 q^{20} -14.8485 q^{21} +16.2826 q^{22} -10.8443 q^{24} +168.826 q^{25} -361.130 q^{26} +27.0000 q^{27} -43.9507 q^{28} +7.20438 q^{29} +211.276 q^{30} +134.077 q^{31} +259.764 q^{32} -11.8894 q^{33} +531.800 q^{34} +84.8411 q^{35} +79.9185 q^{36} -278.619 q^{37} -155.073 q^{38} +263.694 q^{39} +61.9622 q^{40} +201.740 q^{41} +61.0052 q^{42} +505.048 q^{43} -35.1920 q^{44} -154.272 q^{45} -276.805 q^{47} -168.562 q^{48} -318.502 q^{49} -693.622 q^{50} -388.316 q^{51} +780.521 q^{52} -228.284 q^{53} -110.930 q^{54} +67.9336 q^{55} +17.8914 q^{56} +113.233 q^{57} -29.5992 q^{58} -147.371 q^{59} -456.637 q^{60} -518.256 q^{61} -550.855 q^{62} -44.5455 q^{63} -617.744 q^{64} -1506.69 q^{65} +48.8478 q^{66} -207.709 q^{67} -1149.39 q^{68} -348.570 q^{70} +757.160 q^{71} -32.5330 q^{72} -259.213 q^{73} +1144.71 q^{74} +506.477 q^{75} +335.164 q^{76} +19.6156 q^{77} -1083.39 q^{78} -174.045 q^{79} +963.125 q^{80} +81.0000 q^{81} -828.850 q^{82} -136.933 q^{83} -131.852 q^{84} +2218.75 q^{85} -2074.99 q^{86} +21.6131 q^{87} +14.3259 q^{88} -1028.04 q^{89} +633.828 q^{90} -435.052 q^{91} +402.230 q^{93} +1137.25 q^{94} -646.990 q^{95} +779.292 q^{96} -1145.75 q^{97} +1308.57 q^{98} -35.6683 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 21 q^{3} + 38 q^{4} + 10 q^{5} - 17 q^{7} - 36 q^{8} + 63 q^{9} - 65 q^{10} + 5 q^{11} + 114 q^{12} + 152 q^{13} + 23 q^{14} + 30 q^{15} + 314 q^{16} - 22 q^{17} + 38 q^{19} + 171 q^{20} - 51 q^{21}+ \cdots + 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.10851 −1.45258 −0.726288 0.687390i \(-0.758756\pi\)
−0.726288 + 0.687390i \(0.758756\pi\)
\(3\) 3.00000 0.577350
\(4\) 8.87983 1.10998
\(5\) −17.1413 −1.53317 −0.766584 0.642144i \(-0.778045\pi\)
−0.766584 + 0.642144i \(0.778045\pi\)
\(6\) −12.3255 −0.838645
\(7\) −4.94950 −0.267248 −0.133624 0.991032i \(-0.542661\pi\)
−0.133624 + 0.991032i \(0.542661\pi\)
\(8\) −3.61478 −0.159752
\(9\) 9.00000 0.333333
\(10\) 70.4253 2.22704
\(11\) −3.96314 −0.108630 −0.0543151 0.998524i \(-0.517298\pi\)
−0.0543151 + 0.998524i \(0.517298\pi\)
\(12\) 26.6395 0.640846
\(13\) 87.8982 1.87527 0.937637 0.347616i \(-0.113009\pi\)
0.937637 + 0.347616i \(0.113009\pi\)
\(14\) 20.3351 0.388198
\(15\) −51.4240 −0.885175
\(16\) −56.1873 −0.877926
\(17\) −129.439 −1.84668 −0.923338 0.383989i \(-0.874550\pi\)
−0.923338 + 0.383989i \(0.874550\pi\)
\(18\) −36.9766 −0.484192
\(19\) 37.7444 0.455745 0.227873 0.973691i \(-0.426823\pi\)
0.227873 + 0.973691i \(0.426823\pi\)
\(20\) −152.212 −1.70178
\(21\) −14.8485 −0.154296
\(22\) 16.2826 0.157794
\(23\) 0 0
\(24\) −10.8443 −0.0922330
\(25\) 168.826 1.35061
\(26\) −361.130 −2.72398
\(27\) 27.0000 0.192450
\(28\) −43.9507 −0.296640
\(29\) 7.20438 0.0461317 0.0230658 0.999734i \(-0.492657\pi\)
0.0230658 + 0.999734i \(0.492657\pi\)
\(30\) 211.276 1.28578
\(31\) 134.077 0.776802 0.388401 0.921490i \(-0.373027\pi\)
0.388401 + 0.921490i \(0.373027\pi\)
\(32\) 259.764 1.43501
\(33\) −11.8894 −0.0627177
\(34\) 531.800 2.68244
\(35\) 84.8411 0.409736
\(36\) 79.9185 0.369993
\(37\) −278.619 −1.23796 −0.618982 0.785405i \(-0.712455\pi\)
−0.618982 + 0.785405i \(0.712455\pi\)
\(38\) −155.073 −0.662005
\(39\) 263.694 1.08269
\(40\) 61.9622 0.244927
\(41\) 201.740 0.768451 0.384225 0.923239i \(-0.374469\pi\)
0.384225 + 0.923239i \(0.374469\pi\)
\(42\) 61.0052 0.224126
\(43\) 505.048 1.79114 0.895571 0.444918i \(-0.146767\pi\)
0.895571 + 0.444918i \(0.146767\pi\)
\(44\) −35.1920 −0.120577
\(45\) −154.272 −0.511056
\(46\) 0 0
\(47\) −276.805 −0.859067 −0.429533 0.903051i \(-0.641322\pi\)
−0.429533 + 0.903051i \(0.641322\pi\)
\(48\) −168.562 −0.506871
\(49\) −318.502 −0.928578
\(50\) −693.622 −1.96186
\(51\) −388.316 −1.06618
\(52\) 780.521 2.08151
\(53\) −228.284 −0.591646 −0.295823 0.955243i \(-0.595594\pi\)
−0.295823 + 0.955243i \(0.595594\pi\)
\(54\) −110.930 −0.279548
\(55\) 67.9336 0.166548
\(56\) 17.8914 0.0426935
\(57\) 113.233 0.263125
\(58\) −29.5992 −0.0670098
\(59\) −147.371 −0.325188 −0.162594 0.986693i \(-0.551986\pi\)
−0.162594 + 0.986693i \(0.551986\pi\)
\(60\) −456.637 −0.982526
\(61\) −518.256 −1.08780 −0.543901 0.839150i \(-0.683053\pi\)
−0.543901 + 0.839150i \(0.683053\pi\)
\(62\) −550.855 −1.12836
\(63\) −44.5455 −0.0890827
\(64\) −617.744 −1.20653
\(65\) −1506.69 −2.87511
\(66\) 48.8478 0.0911022
\(67\) −207.709 −0.378742 −0.189371 0.981906i \(-0.560645\pi\)
−0.189371 + 0.981906i \(0.560645\pi\)
\(68\) −1149.39 −2.04977
\(69\) 0 0
\(70\) −348.570 −0.595173
\(71\) 757.160 1.26561 0.632805 0.774311i \(-0.281903\pi\)
0.632805 + 0.774311i \(0.281903\pi\)
\(72\) −32.5330 −0.0532508
\(73\) −259.213 −0.415597 −0.207799 0.978172i \(-0.566630\pi\)
−0.207799 + 0.978172i \(0.566630\pi\)
\(74\) 1144.71 1.79824
\(75\) 506.477 0.779773
\(76\) 335.164 0.505868
\(77\) 19.6156 0.0290312
\(78\) −1083.39 −1.57269
\(79\) −174.045 −0.247868 −0.123934 0.992290i \(-0.539551\pi\)
−0.123934 + 0.992290i \(0.539551\pi\)
\(80\) 963.125 1.34601
\(81\) 81.0000 0.111111
\(82\) −828.850 −1.11623
\(83\) −136.933 −0.181089 −0.0905445 0.995892i \(-0.528861\pi\)
−0.0905445 + 0.995892i \(0.528861\pi\)
\(84\) −131.852 −0.171265
\(85\) 2218.75 2.83127
\(86\) −2074.99 −2.60177
\(87\) 21.6131 0.0266341
\(88\) 14.3259 0.0173539
\(89\) −1028.04 −1.22441 −0.612204 0.790699i \(-0.709717\pi\)
−0.612204 + 0.790699i \(0.709717\pi\)
\(90\) 633.828 0.742348
\(91\) −435.052 −0.501163
\(92\) 0 0
\(93\) 402.230 0.448487
\(94\) 1137.25 1.24786
\(95\) −646.990 −0.698735
\(96\) 779.292 0.828502
\(97\) −1145.75 −1.19931 −0.599654 0.800259i \(-0.704695\pi\)
−0.599654 + 0.800259i \(0.704695\pi\)
\(98\) 1308.57 1.34883
\(99\) −35.6683 −0.0362101
\(100\) 1499.14 1.49914
\(101\) −1343.18 −1.32328 −0.661639 0.749823i \(-0.730139\pi\)
−0.661639 + 0.749823i \(0.730139\pi\)
\(102\) 1595.40 1.54871
\(103\) 1732.02 1.65691 0.828454 0.560058i \(-0.189221\pi\)
0.828454 + 0.560058i \(0.189221\pi\)
\(104\) −317.733 −0.299579
\(105\) 254.523 0.236561
\(106\) 937.907 0.859411
\(107\) 2078.94 1.87831 0.939155 0.343494i \(-0.111610\pi\)
0.939155 + 0.343494i \(0.111610\pi\)
\(108\) 239.755 0.213615
\(109\) −422.880 −0.371602 −0.185801 0.982587i \(-0.559488\pi\)
−0.185801 + 0.982587i \(0.559488\pi\)
\(110\) −279.106 −0.241924
\(111\) −835.856 −0.714739
\(112\) 278.099 0.234624
\(113\) 244.456 0.203509 0.101754 0.994810i \(-0.467554\pi\)
0.101754 + 0.994810i \(0.467554\pi\)
\(114\) −465.220 −0.382209
\(115\) 0 0
\(116\) 63.9736 0.0512052
\(117\) 791.083 0.625091
\(118\) 605.476 0.472361
\(119\) 640.657 0.493520
\(120\) 185.887 0.141409
\(121\) −1315.29 −0.988199
\(122\) 2129.26 1.58011
\(123\) 605.220 0.443665
\(124\) 1190.58 0.862234
\(125\) −751.232 −0.537538
\(126\) 183.016 0.129399
\(127\) −2199.81 −1.53702 −0.768511 0.639837i \(-0.779002\pi\)
−0.768511 + 0.639837i \(0.779002\pi\)
\(128\) 459.894 0.317572
\(129\) 1515.14 1.03412
\(130\) 6190.26 4.17632
\(131\) −2044.73 −1.36373 −0.681865 0.731478i \(-0.738831\pi\)
−0.681865 + 0.731478i \(0.738831\pi\)
\(132\) −105.576 −0.0696153
\(133\) −186.816 −0.121797
\(134\) 853.374 0.550151
\(135\) −462.816 −0.295058
\(136\) 467.893 0.295011
\(137\) 2251.93 1.40435 0.702173 0.712006i \(-0.252213\pi\)
0.702173 + 0.712006i \(0.252213\pi\)
\(138\) 0 0
\(139\) 936.064 0.571194 0.285597 0.958350i \(-0.407808\pi\)
0.285597 + 0.958350i \(0.407808\pi\)
\(140\) 753.375 0.454799
\(141\) −830.415 −0.495982
\(142\) −3110.80 −1.83840
\(143\) −348.353 −0.203711
\(144\) −505.685 −0.292642
\(145\) −123.493 −0.0707277
\(146\) 1064.98 0.603687
\(147\) −955.507 −0.536115
\(148\) −2474.09 −1.37411
\(149\) 1275.57 0.701337 0.350668 0.936500i \(-0.385954\pi\)
0.350668 + 0.936500i \(0.385954\pi\)
\(150\) −2080.87 −1.13268
\(151\) 2731.45 1.47207 0.736035 0.676944i \(-0.236696\pi\)
0.736035 + 0.676944i \(0.236696\pi\)
\(152\) −136.438 −0.0728064
\(153\) −1164.95 −0.615559
\(154\) −80.5907 −0.0421700
\(155\) −2298.25 −1.19097
\(156\) 2341.56 1.20176
\(157\) 830.575 0.422211 0.211105 0.977463i \(-0.432294\pi\)
0.211105 + 0.977463i \(0.432294\pi\)
\(158\) 715.063 0.360047
\(159\) −684.853 −0.341587
\(160\) −4452.71 −2.20011
\(161\) 0 0
\(162\) −332.789 −0.161397
\(163\) 2615.14 1.25665 0.628324 0.777951i \(-0.283741\pi\)
0.628324 + 0.777951i \(0.283741\pi\)
\(164\) 1791.42 0.852964
\(165\) 203.801 0.0961568
\(166\) 562.591 0.263046
\(167\) −1845.13 −0.854973 −0.427486 0.904022i \(-0.640601\pi\)
−0.427486 + 0.904022i \(0.640601\pi\)
\(168\) 53.6741 0.0246491
\(169\) 5529.09 2.51665
\(170\) −9115.76 −4.11263
\(171\) 339.700 0.151915
\(172\) 4484.74 1.98813
\(173\) −2313.98 −1.01693 −0.508464 0.861083i \(-0.669787\pi\)
−0.508464 + 0.861083i \(0.669787\pi\)
\(174\) −88.7977 −0.0386881
\(175\) −835.604 −0.360947
\(176\) 222.678 0.0953693
\(177\) −442.114 −0.187748
\(178\) 4223.72 1.77855
\(179\) −4725.43 −1.97316 −0.986578 0.163289i \(-0.947790\pi\)
−0.986578 + 0.163289i \(0.947790\pi\)
\(180\) −1369.91 −0.567261
\(181\) −337.265 −0.138501 −0.0692506 0.997599i \(-0.522061\pi\)
−0.0692506 + 0.997599i \(0.522061\pi\)
\(182\) 1787.41 0.727978
\(183\) −1554.77 −0.628042
\(184\) 0 0
\(185\) 4775.90 1.89801
\(186\) −1652.56 −0.651462
\(187\) 512.984 0.200605
\(188\) −2457.98 −0.953546
\(189\) −133.637 −0.0514319
\(190\) 2658.16 1.01497
\(191\) 3006.48 1.13896 0.569479 0.822006i \(-0.307145\pi\)
0.569479 + 0.822006i \(0.307145\pi\)
\(192\) −1853.23 −0.696591
\(193\) −693.150 −0.258518 −0.129259 0.991611i \(-0.541260\pi\)
−0.129259 + 0.991611i \(0.541260\pi\)
\(194\) 4707.31 1.74209
\(195\) −4520.08 −1.65995
\(196\) −2828.25 −1.03070
\(197\) −2574.36 −0.931043 −0.465521 0.885037i \(-0.654133\pi\)
−0.465521 + 0.885037i \(0.654133\pi\)
\(198\) 146.543 0.0525979
\(199\) 2942.45 1.04816 0.524082 0.851668i \(-0.324409\pi\)
0.524082 + 0.851668i \(0.324409\pi\)
\(200\) −610.268 −0.215762
\(201\) −623.127 −0.218667
\(202\) 5518.45 1.92216
\(203\) −35.6581 −0.0123286
\(204\) −3448.18 −1.18344
\(205\) −3458.09 −1.17816
\(206\) −7116.03 −2.40678
\(207\) 0 0
\(208\) −4938.76 −1.64635
\(209\) −149.586 −0.0495077
\(210\) −1045.71 −0.343623
\(211\) 3360.93 1.09657 0.548284 0.836292i \(-0.315281\pi\)
0.548284 + 0.836292i \(0.315281\pi\)
\(212\) −2027.12 −0.656715
\(213\) 2271.48 0.730701
\(214\) −8541.36 −2.72839
\(215\) −8657.21 −2.74612
\(216\) −97.5991 −0.0307443
\(217\) −663.613 −0.207599
\(218\) 1737.41 0.539780
\(219\) −777.640 −0.239945
\(220\) 603.238 0.184865
\(221\) −11377.4 −3.46302
\(222\) 3434.12 1.03821
\(223\) −1644.22 −0.493746 −0.246873 0.969048i \(-0.579403\pi\)
−0.246873 + 0.969048i \(0.579403\pi\)
\(224\) −1285.70 −0.383503
\(225\) 1519.43 0.450202
\(226\) −1004.35 −0.295612
\(227\) 245.967 0.0719182 0.0359591 0.999353i \(-0.488551\pi\)
0.0359591 + 0.999353i \(0.488551\pi\)
\(228\) 1005.49 0.292063
\(229\) 2521.11 0.727508 0.363754 0.931495i \(-0.381495\pi\)
0.363754 + 0.931495i \(0.381495\pi\)
\(230\) 0 0
\(231\) 58.8467 0.0167612
\(232\) −26.0423 −0.00736965
\(233\) 1154.72 0.324672 0.162336 0.986736i \(-0.448097\pi\)
0.162336 + 0.986736i \(0.448097\pi\)
\(234\) −3250.17 −0.907993
\(235\) 4744.81 1.31709
\(236\) −1308.63 −0.360952
\(237\) −522.134 −0.143106
\(238\) −2632.14 −0.716876
\(239\) 5262.76 1.42435 0.712174 0.702003i \(-0.247711\pi\)
0.712174 + 0.702003i \(0.247711\pi\)
\(240\) 2889.38 0.777119
\(241\) 1492.66 0.398965 0.199482 0.979901i \(-0.436074\pi\)
0.199482 + 0.979901i \(0.436074\pi\)
\(242\) 5403.89 1.43544
\(243\) 243.000 0.0641500
\(244\) −4602.03 −1.20744
\(245\) 5459.56 1.42367
\(246\) −2486.55 −0.644458
\(247\) 3317.66 0.854647
\(248\) −484.658 −0.124096
\(249\) −410.800 −0.104552
\(250\) 3086.44 0.780815
\(251\) 4284.67 1.07748 0.538738 0.842474i \(-0.318901\pi\)
0.538738 + 0.842474i \(0.318901\pi\)
\(252\) −395.557 −0.0988799
\(253\) 0 0
\(254\) 9037.94 2.23264
\(255\) 6656.26 1.63463
\(256\) 3052.48 0.745233
\(257\) 2575.30 0.625069 0.312535 0.949906i \(-0.398822\pi\)
0.312535 + 0.949906i \(0.398822\pi\)
\(258\) −6224.98 −1.50213
\(259\) 1379.02 0.330843
\(260\) −13379.2 −3.19131
\(261\) 64.8394 0.0153772
\(262\) 8400.77 1.98092
\(263\) 230.564 0.0540577 0.0270288 0.999635i \(-0.491395\pi\)
0.0270288 + 0.999635i \(0.491395\pi\)
\(264\) 42.9777 0.0100193
\(265\) 3913.10 0.907093
\(266\) 767.535 0.176920
\(267\) −3084.13 −0.706913
\(268\) −1844.42 −0.420395
\(269\) 1137.30 0.257778 0.128889 0.991659i \(-0.458859\pi\)
0.128889 + 0.991659i \(0.458859\pi\)
\(270\) 1901.48 0.428595
\(271\) −6157.61 −1.38025 −0.690126 0.723689i \(-0.742445\pi\)
−0.690126 + 0.723689i \(0.742445\pi\)
\(272\) 7272.81 1.62124
\(273\) −1305.16 −0.289347
\(274\) −9252.07 −2.03992
\(275\) −669.080 −0.146717
\(276\) 0 0
\(277\) 3251.93 0.705377 0.352688 0.935741i \(-0.385268\pi\)
0.352688 + 0.935741i \(0.385268\pi\)
\(278\) −3845.83 −0.829703
\(279\) 1206.69 0.258934
\(280\) −306.682 −0.0654563
\(281\) −939.520 −0.199456 −0.0997279 0.995015i \(-0.531797\pi\)
−0.0997279 + 0.995015i \(0.531797\pi\)
\(282\) 3411.76 0.720453
\(283\) 3426.36 0.719704 0.359852 0.933009i \(-0.382827\pi\)
0.359852 + 0.933009i \(0.382827\pi\)
\(284\) 6723.45 1.40480
\(285\) −1940.97 −0.403415
\(286\) 1431.21 0.295906
\(287\) −998.512 −0.205367
\(288\) 2337.88 0.478336
\(289\) 11841.4 2.41021
\(290\) 507.371 0.102737
\(291\) −3437.24 −0.692421
\(292\) −2301.77 −0.461304
\(293\) 601.936 0.120019 0.0600094 0.998198i \(-0.480887\pi\)
0.0600094 + 0.998198i \(0.480887\pi\)
\(294\) 3925.71 0.778748
\(295\) 2526.14 0.498569
\(296\) 1007.15 0.197768
\(297\) −107.005 −0.0209059
\(298\) −5240.71 −1.01875
\(299\) 0 0
\(300\) 4497.43 0.865531
\(301\) −2499.74 −0.478679
\(302\) −11222.2 −2.13829
\(303\) −4029.53 −0.763995
\(304\) −2120.76 −0.400111
\(305\) 8883.61 1.66778
\(306\) 4786.20 0.894146
\(307\) 1981.53 0.368377 0.184189 0.982891i \(-0.441034\pi\)
0.184189 + 0.982891i \(0.441034\pi\)
\(308\) 174.183 0.0322240
\(309\) 5196.07 0.956616
\(310\) 9442.39 1.72997
\(311\) 7053.18 1.28601 0.643005 0.765862i \(-0.277687\pi\)
0.643005 + 0.765862i \(0.277687\pi\)
\(312\) −953.198 −0.172962
\(313\) 3192.87 0.576587 0.288294 0.957542i \(-0.406912\pi\)
0.288294 + 0.957542i \(0.406912\pi\)
\(314\) −3412.42 −0.613293
\(315\) 763.570 0.136579
\(316\) −1545.49 −0.275128
\(317\) 5583.20 0.989222 0.494611 0.869114i \(-0.335310\pi\)
0.494611 + 0.869114i \(0.335310\pi\)
\(318\) 2813.72 0.496181
\(319\) −28.5520 −0.00501129
\(320\) 10589.0 1.84982
\(321\) 6236.83 1.08444
\(322\) 0 0
\(323\) −4885.59 −0.841614
\(324\) 719.266 0.123331
\(325\) 14839.5 2.53276
\(326\) −10744.3 −1.82538
\(327\) −1268.64 −0.214544
\(328\) −729.246 −0.122762
\(329\) 1370.05 0.229584
\(330\) −837.317 −0.139675
\(331\) 7071.59 1.17429 0.587145 0.809482i \(-0.300252\pi\)
0.587145 + 0.809482i \(0.300252\pi\)
\(332\) −1215.94 −0.201005
\(333\) −2507.57 −0.412655
\(334\) 7580.73 1.24191
\(335\) 3560.41 0.580675
\(336\) 834.297 0.135460
\(337\) −3799.70 −0.614192 −0.307096 0.951679i \(-0.599357\pi\)
−0.307096 + 0.951679i \(0.599357\pi\)
\(338\) −22716.3 −3.65563
\(339\) 733.368 0.117496
\(340\) 19702.1 3.14264
\(341\) −531.365 −0.0843842
\(342\) −1395.66 −0.220668
\(343\) 3274.11 0.515409
\(344\) −1825.64 −0.286139
\(345\) 0 0
\(346\) 9507.01 1.47717
\(347\) 6587.09 1.01906 0.509529 0.860453i \(-0.329819\pi\)
0.509529 + 0.860453i \(0.329819\pi\)
\(348\) 191.921 0.0295633
\(349\) 8960.39 1.37432 0.687161 0.726505i \(-0.258857\pi\)
0.687161 + 0.726505i \(0.258857\pi\)
\(350\) 3433.08 0.524303
\(351\) 2373.25 0.360897
\(352\) −1029.48 −0.155885
\(353\) −9565.85 −1.44232 −0.721160 0.692769i \(-0.756391\pi\)
−0.721160 + 0.692769i \(0.756391\pi\)
\(354\) 1816.43 0.272718
\(355\) −12978.7 −1.94039
\(356\) −9128.85 −1.35907
\(357\) 1921.97 0.284934
\(358\) 19414.5 2.86616
\(359\) 9215.61 1.35482 0.677411 0.735605i \(-0.263102\pi\)
0.677411 + 0.735605i \(0.263102\pi\)
\(360\) 557.660 0.0816424
\(361\) −5434.36 −0.792296
\(362\) 1385.66 0.201184
\(363\) −3945.88 −0.570537
\(364\) −3863.19 −0.556280
\(365\) 4443.26 0.637181
\(366\) 6387.78 0.912280
\(367\) −9906.04 −1.40897 −0.704484 0.709720i \(-0.748821\pi\)
−0.704484 + 0.709720i \(0.748821\pi\)
\(368\) 0 0
\(369\) 1815.66 0.256150
\(370\) −19621.8 −2.75700
\(371\) 1129.89 0.158116
\(372\) 3571.73 0.497811
\(373\) −8079.02 −1.12149 −0.560745 0.827988i \(-0.689485\pi\)
−0.560745 + 0.827988i \(0.689485\pi\)
\(374\) −2107.60 −0.291394
\(375\) −2253.70 −0.310348
\(376\) 1000.59 0.137238
\(377\) 633.251 0.0865096
\(378\) 549.047 0.0747088
\(379\) −742.403 −0.100619 −0.0503096 0.998734i \(-0.516021\pi\)
−0.0503096 + 0.998734i \(0.516021\pi\)
\(380\) −5745.16 −0.775580
\(381\) −6599.44 −0.887400
\(382\) −12352.1 −1.65442
\(383\) −4920.48 −0.656462 −0.328231 0.944597i \(-0.606452\pi\)
−0.328231 + 0.944597i \(0.606452\pi\)
\(384\) 1379.68 0.183351
\(385\) −336.237 −0.0445097
\(386\) 2847.81 0.375518
\(387\) 4545.43 0.597047
\(388\) −10174.0 −1.33121
\(389\) 10776.2 1.40456 0.702279 0.711902i \(-0.252166\pi\)
0.702279 + 0.711902i \(0.252166\pi\)
\(390\) 18570.8 2.41120
\(391\) 0 0
\(392\) 1151.32 0.148343
\(393\) −6134.18 −0.787349
\(394\) 10576.8 1.35241
\(395\) 2983.36 0.380023
\(396\) −316.728 −0.0401924
\(397\) 2679.77 0.338775 0.169388 0.985549i \(-0.445821\pi\)
0.169388 + 0.985549i \(0.445821\pi\)
\(398\) −12089.1 −1.52254
\(399\) −560.448 −0.0703196
\(400\) −9485.86 −1.18573
\(401\) −3562.08 −0.443595 −0.221798 0.975093i \(-0.571192\pi\)
−0.221798 + 0.975093i \(0.571192\pi\)
\(402\) 2560.12 0.317630
\(403\) 11785.1 1.45672
\(404\) −11927.2 −1.46881
\(405\) −1388.45 −0.170352
\(406\) 146.501 0.0179082
\(407\) 1104.21 0.134480
\(408\) 1403.68 0.170325
\(409\) 4790.56 0.579164 0.289582 0.957153i \(-0.406484\pi\)
0.289582 + 0.957153i \(0.406484\pi\)
\(410\) 14207.6 1.71137
\(411\) 6755.79 0.810800
\(412\) 15380.1 1.83913
\(413\) 729.415 0.0869060
\(414\) 0 0
\(415\) 2347.22 0.277640
\(416\) 22832.8 2.69103
\(417\) 2808.19 0.329779
\(418\) 614.577 0.0719137
\(419\) −5982.86 −0.697571 −0.348785 0.937203i \(-0.613406\pi\)
−0.348785 + 0.937203i \(0.613406\pi\)
\(420\) 2260.12 0.262578
\(421\) 2220.54 0.257061 0.128530 0.991706i \(-0.458974\pi\)
0.128530 + 0.991706i \(0.458974\pi\)
\(422\) −13808.4 −1.59285
\(423\) −2491.24 −0.286356
\(424\) 825.198 0.0945169
\(425\) −21852.6 −2.49413
\(426\) −9332.39 −1.06140
\(427\) 2565.11 0.290713
\(428\) 18460.7 2.08488
\(429\) −1045.06 −0.117613
\(430\) 35568.2 3.98895
\(431\) 5460.52 0.610264 0.305132 0.952310i \(-0.401299\pi\)
0.305132 + 0.952310i \(0.401299\pi\)
\(432\) −1517.06 −0.168957
\(433\) 4625.81 0.513400 0.256700 0.966491i \(-0.417365\pi\)
0.256700 + 0.966491i \(0.417365\pi\)
\(434\) 2726.46 0.301553
\(435\) −370.478 −0.0408346
\(436\) −3755.11 −0.412470
\(437\) 0 0
\(438\) 3194.94 0.348539
\(439\) 4671.54 0.507882 0.253941 0.967220i \(-0.418273\pi\)
0.253941 + 0.967220i \(0.418273\pi\)
\(440\) −245.565 −0.0266065
\(441\) −2866.52 −0.309526
\(442\) 46744.2 5.03031
\(443\) 6162.78 0.660954 0.330477 0.943814i \(-0.392790\pi\)
0.330477 + 0.943814i \(0.392790\pi\)
\(444\) −7422.26 −0.793345
\(445\) 17622.1 1.87723
\(446\) 6755.30 0.717203
\(447\) 3826.72 0.404917
\(448\) 3057.53 0.322443
\(449\) 7744.75 0.814025 0.407013 0.913423i \(-0.366571\pi\)
0.407013 + 0.913423i \(0.366571\pi\)
\(450\) −6242.60 −0.653953
\(451\) −799.524 −0.0834769
\(452\) 2170.73 0.225890
\(453\) 8194.36 0.849900
\(454\) −1010.56 −0.104467
\(455\) 7457.38 0.768368
\(456\) −409.314 −0.0420348
\(457\) 396.080 0.0405424 0.0202712 0.999795i \(-0.493547\pi\)
0.0202712 + 0.999795i \(0.493547\pi\)
\(458\) −10358.0 −1.05676
\(459\) −3494.84 −0.355393
\(460\) 0 0
\(461\) 180.982 0.0182846 0.00914229 0.999958i \(-0.497090\pi\)
0.00914229 + 0.999958i \(0.497090\pi\)
\(462\) −241.772 −0.0243469
\(463\) 13182.3 1.32319 0.661593 0.749863i \(-0.269881\pi\)
0.661593 + 0.749863i \(0.269881\pi\)
\(464\) −404.794 −0.0405002
\(465\) −6894.76 −0.687606
\(466\) −4744.19 −0.471611
\(467\) 7427.30 0.735963 0.367981 0.929833i \(-0.380049\pi\)
0.367981 + 0.929833i \(0.380049\pi\)
\(468\) 7024.68 0.693838
\(469\) 1028.06 0.101218
\(470\) −19494.1 −1.91318
\(471\) 2491.72 0.243763
\(472\) 532.715 0.0519496
\(473\) −2001.58 −0.194572
\(474\) 2145.19 0.207873
\(475\) 6372.23 0.615532
\(476\) 5688.92 0.547797
\(477\) −2054.56 −0.197215
\(478\) −21622.1 −2.06898
\(479\) 5359.74 0.511259 0.255629 0.966775i \(-0.417717\pi\)
0.255629 + 0.966775i \(0.417717\pi\)
\(480\) −13358.1 −1.27023
\(481\) −24490.1 −2.32152
\(482\) −6132.59 −0.579527
\(483\) 0 0
\(484\) −11679.6 −1.09688
\(485\) 19639.6 1.83874
\(486\) −998.367 −0.0931828
\(487\) 10986.5 1.02227 0.511135 0.859501i \(-0.329225\pi\)
0.511135 + 0.859501i \(0.329225\pi\)
\(488\) 1873.38 0.173779
\(489\) 7845.43 0.725526
\(490\) −22430.6 −2.06799
\(491\) 2560.66 0.235358 0.117679 0.993052i \(-0.462455\pi\)
0.117679 + 0.993052i \(0.462455\pi\)
\(492\) 5374.25 0.492459
\(493\) −932.525 −0.0851903
\(494\) −13630.6 −1.24144
\(495\) 611.402 0.0555161
\(496\) −7533.40 −0.681975
\(497\) −3747.56 −0.338232
\(498\) 1687.77 0.151869
\(499\) −12994.3 −1.16574 −0.582870 0.812566i \(-0.698070\pi\)
−0.582870 + 0.812566i \(0.698070\pi\)
\(500\) −6670.82 −0.596656
\(501\) −5535.39 −0.493619
\(502\) −17603.6 −1.56512
\(503\) 13806.6 1.22387 0.611934 0.790909i \(-0.290392\pi\)
0.611934 + 0.790909i \(0.290392\pi\)
\(504\) 161.022 0.0142312
\(505\) 23023.8 2.02881
\(506\) 0 0
\(507\) 16587.3 1.45299
\(508\) −19534.0 −1.70606
\(509\) −5140.97 −0.447680 −0.223840 0.974626i \(-0.571859\pi\)
−0.223840 + 0.974626i \(0.571859\pi\)
\(510\) −27347.3 −2.37443
\(511\) 1282.98 0.111068
\(512\) −16220.3 −1.40008
\(513\) 1019.10 0.0877082
\(514\) −10580.6 −0.907961
\(515\) −29689.2 −2.54032
\(516\) 13454.2 1.14785
\(517\) 1097.02 0.0933206
\(518\) −5665.73 −0.480575
\(519\) −6941.94 −0.587124
\(520\) 5446.37 0.459306
\(521\) 15494.2 1.30291 0.651453 0.758689i \(-0.274160\pi\)
0.651453 + 0.758689i \(0.274160\pi\)
\(522\) −266.393 −0.0223366
\(523\) 2314.14 0.193480 0.0967401 0.995310i \(-0.469158\pi\)
0.0967401 + 0.995310i \(0.469158\pi\)
\(524\) −18156.8 −1.51371
\(525\) −2506.81 −0.208393
\(526\) −947.272 −0.0785229
\(527\) −17354.7 −1.43450
\(528\) 668.034 0.0550615
\(529\) 0 0
\(530\) −16077.0 −1.31762
\(531\) −1326.34 −0.108396
\(532\) −1658.89 −0.135192
\(533\) 17732.6 1.44106
\(534\) 12671.2 1.02685
\(535\) −35635.9 −2.87977
\(536\) 750.823 0.0605049
\(537\) −14176.3 −1.13920
\(538\) −4672.59 −0.374442
\(539\) 1262.27 0.100872
\(540\) −4109.73 −0.327509
\(541\) −11497.1 −0.913674 −0.456837 0.889551i \(-0.651018\pi\)
−0.456837 + 0.889551i \(0.651018\pi\)
\(542\) 25298.6 2.00492
\(543\) −1011.80 −0.0799637
\(544\) −33623.5 −2.64999
\(545\) 7248.74 0.569728
\(546\) 5362.24 0.420298
\(547\) 21680.6 1.69469 0.847344 0.531045i \(-0.178200\pi\)
0.847344 + 0.531045i \(0.178200\pi\)
\(548\) 19996.8 1.55879
\(549\) −4664.30 −0.362600
\(550\) 2748.92 0.213117
\(551\) 271.925 0.0210243
\(552\) 0 0
\(553\) 861.434 0.0662421
\(554\) −13360.6 −1.02461
\(555\) 14327.7 1.09581
\(556\) 8312.09 0.634013
\(557\) −19251.2 −1.46445 −0.732227 0.681061i \(-0.761519\pi\)
−0.732227 + 0.681061i \(0.761519\pi\)
\(558\) −4957.69 −0.376122
\(559\) 44392.8 3.35888
\(560\) −4766.99 −0.359718
\(561\) 1538.95 0.115819
\(562\) 3860.03 0.289725
\(563\) 17990.2 1.34671 0.673355 0.739319i \(-0.264852\pi\)
0.673355 + 0.739319i \(0.264852\pi\)
\(564\) −7373.94 −0.550530
\(565\) −4190.31 −0.312013
\(566\) −14077.2 −1.04542
\(567\) −400.910 −0.0296942
\(568\) −2736.97 −0.202184
\(569\) 2423.92 0.178587 0.0892936 0.996005i \(-0.471539\pi\)
0.0892936 + 0.996005i \(0.471539\pi\)
\(570\) 7974.49 0.585991
\(571\) −11609.0 −0.850824 −0.425412 0.905000i \(-0.639871\pi\)
−0.425412 + 0.905000i \(0.639871\pi\)
\(572\) −3093.31 −0.226115
\(573\) 9019.43 0.657578
\(574\) 4102.39 0.298311
\(575\) 0 0
\(576\) −5559.70 −0.402177
\(577\) −19316.0 −1.39365 −0.696825 0.717241i \(-0.745405\pi\)
−0.696825 + 0.717241i \(0.745405\pi\)
\(578\) −48650.3 −3.50102
\(579\) −2079.45 −0.149256
\(580\) −1096.59 −0.0785062
\(581\) 677.752 0.0483957
\(582\) 14121.9 1.00579
\(583\) 904.722 0.0642706
\(584\) 936.999 0.0663927
\(585\) −13560.2 −0.958370
\(586\) −2473.06 −0.174336
\(587\) 7754.61 0.545259 0.272630 0.962119i \(-0.412107\pi\)
0.272630 + 0.962119i \(0.412107\pi\)
\(588\) −8484.74 −0.595076
\(589\) 5060.64 0.354024
\(590\) −10378.7 −0.724209
\(591\) −7723.07 −0.537538
\(592\) 15654.8 1.08684
\(593\) −8363.30 −0.579156 −0.289578 0.957154i \(-0.593515\pi\)
−0.289578 + 0.957154i \(0.593515\pi\)
\(594\) 439.630 0.0303674
\(595\) −10981.7 −0.756650
\(596\) 11326.9 0.778469
\(597\) 8827.34 0.605158
\(598\) 0 0
\(599\) −2208.14 −0.150621 −0.0753107 0.997160i \(-0.523995\pi\)
−0.0753107 + 0.997160i \(0.523995\pi\)
\(600\) −1830.81 −0.124571
\(601\) −17303.7 −1.17443 −0.587215 0.809431i \(-0.699776\pi\)
−0.587215 + 0.809431i \(0.699776\pi\)
\(602\) 10270.2 0.695318
\(603\) −1869.38 −0.126247
\(604\) 24254.8 1.63397
\(605\) 22545.9 1.51508
\(606\) 16555.3 1.10976
\(607\) 4024.90 0.269136 0.134568 0.990904i \(-0.457035\pi\)
0.134568 + 0.990904i \(0.457035\pi\)
\(608\) 9804.64 0.653998
\(609\) −106.974 −0.00711792
\(610\) −36498.4 −2.42258
\(611\) −24330.6 −1.61099
\(612\) −10344.5 −0.683257
\(613\) 13470.0 0.887516 0.443758 0.896147i \(-0.353645\pi\)
0.443758 + 0.896147i \(0.353645\pi\)
\(614\) −8141.13 −0.535096
\(615\) −10374.3 −0.680214
\(616\) −70.9060 −0.00463780
\(617\) 9316.10 0.607864 0.303932 0.952694i \(-0.401700\pi\)
0.303932 + 0.952694i \(0.401700\pi\)
\(618\) −21348.1 −1.38956
\(619\) −28552.1 −1.85397 −0.926983 0.375103i \(-0.877607\pi\)
−0.926983 + 0.375103i \(0.877607\pi\)
\(620\) −20408.1 −1.32195
\(621\) 0 0
\(622\) −28978.1 −1.86803
\(623\) 5088.30 0.327221
\(624\) −14816.3 −0.950522
\(625\) −8226.08 −0.526469
\(626\) −13117.9 −0.837537
\(627\) −448.759 −0.0285833
\(628\) 7375.36 0.468645
\(629\) 36064.0 2.28612
\(630\) −3137.13 −0.198391
\(631\) 10839.1 0.683833 0.341916 0.939730i \(-0.388924\pi\)
0.341916 + 0.939730i \(0.388924\pi\)
\(632\) 629.133 0.0395974
\(633\) 10082.8 0.633103
\(634\) −22938.6 −1.43692
\(635\) 37707.7 2.35651
\(636\) −6081.37 −0.379154
\(637\) −27995.8 −1.74134
\(638\) 117.306 0.00727929
\(639\) 6814.44 0.421870
\(640\) −7883.20 −0.486892
\(641\) 9559.89 0.589069 0.294534 0.955641i \(-0.404835\pi\)
0.294534 + 0.955641i \(0.404835\pi\)
\(642\) −25624.1 −1.57524
\(643\) 9002.55 0.552140 0.276070 0.961138i \(-0.410968\pi\)
0.276070 + 0.961138i \(0.410968\pi\)
\(644\) 0 0
\(645\) −25971.6 −1.58548
\(646\) 20072.5 1.22251
\(647\) 4688.32 0.284879 0.142439 0.989804i \(-0.454505\pi\)
0.142439 + 0.989804i \(0.454505\pi\)
\(648\) −292.797 −0.0177503
\(649\) 584.054 0.0353253
\(650\) −60968.1 −3.67902
\(651\) −1990.84 −0.119857
\(652\) 23222.0 1.39485
\(653\) −2087.99 −0.125129 −0.0625647 0.998041i \(-0.519928\pi\)
−0.0625647 + 0.998041i \(0.519928\pi\)
\(654\) 5212.22 0.311642
\(655\) 35049.4 2.09083
\(656\) −11335.2 −0.674643
\(657\) −2332.92 −0.138532
\(658\) −5628.85 −0.333488
\(659\) −30407.2 −1.79742 −0.898708 0.438548i \(-0.855493\pi\)
−0.898708 + 0.438548i \(0.855493\pi\)
\(660\) 1809.72 0.106732
\(661\) −29001.3 −1.70654 −0.853269 0.521472i \(-0.825383\pi\)
−0.853269 + 0.521472i \(0.825383\pi\)
\(662\) −29053.7 −1.70574
\(663\) −34132.3 −1.99938
\(664\) 494.984 0.0289294
\(665\) 3202.28 0.186735
\(666\) 10302.4 0.599412
\(667\) 0 0
\(668\) −16384.4 −0.949001
\(669\) −4932.67 −0.285064
\(670\) −14628.0 −0.843475
\(671\) 2053.92 0.118168
\(672\) −3857.11 −0.221415
\(673\) 20865.9 1.19513 0.597565 0.801820i \(-0.296135\pi\)
0.597565 + 0.801820i \(0.296135\pi\)
\(674\) 15611.1 0.892161
\(675\) 4558.30 0.259924
\(676\) 49097.3 2.79343
\(677\) 4323.70 0.245456 0.122728 0.992440i \(-0.460836\pi\)
0.122728 + 0.992440i \(0.460836\pi\)
\(678\) −3013.05 −0.170672
\(679\) 5670.88 0.320513
\(680\) −8020.31 −0.452301
\(681\) 737.902 0.0415220
\(682\) 2183.12 0.122574
\(683\) 14270.1 0.799460 0.399730 0.916633i \(-0.369104\pi\)
0.399730 + 0.916633i \(0.369104\pi\)
\(684\) 3016.48 0.168623
\(685\) −38601.1 −2.15310
\(686\) −13451.7 −0.748671
\(687\) 7563.32 0.420027
\(688\) −28377.3 −1.57249
\(689\) −20065.8 −1.10950
\(690\) 0 0
\(691\) 7403.39 0.407581 0.203790 0.979015i \(-0.434674\pi\)
0.203790 + 0.979015i \(0.434674\pi\)
\(692\) −20547.8 −1.12877
\(693\) 176.540 0.00967707
\(694\) −27063.1 −1.48026
\(695\) −16045.4 −0.875736
\(696\) −78.1268 −0.00425487
\(697\) −26112.9 −1.41908
\(698\) −36813.8 −1.99631
\(699\) 3464.17 0.187449
\(700\) −7420.02 −0.400643
\(701\) −1606.89 −0.0865786 −0.0432893 0.999063i \(-0.513784\pi\)
−0.0432893 + 0.999063i \(0.513784\pi\)
\(702\) −9750.51 −0.524230
\(703\) −10516.3 −0.564196
\(704\) 2448.21 0.131066
\(705\) 14234.4 0.760425
\(706\) 39301.4 2.09508
\(707\) 6648.05 0.353643
\(708\) −3925.90 −0.208396
\(709\) −1596.85 −0.0845854 −0.0422927 0.999105i \(-0.513466\pi\)
−0.0422927 + 0.999105i \(0.513466\pi\)
\(710\) 53323.2 2.81857
\(711\) −1566.40 −0.0826225
\(712\) 3716.15 0.195602
\(713\) 0 0
\(714\) −7896.43 −0.413889
\(715\) 5971.24 0.312324
\(716\) −41961.0 −2.19016
\(717\) 15788.3 0.822348
\(718\) −37862.4 −1.96798
\(719\) 13492.0 0.699812 0.349906 0.936785i \(-0.386213\pi\)
0.349906 + 0.936785i \(0.386213\pi\)
\(720\) 8668.13 0.448670
\(721\) −8572.66 −0.442805
\(722\) 22327.1 1.15087
\(723\) 4477.97 0.230342
\(724\) −2994.86 −0.153733
\(725\) 1216.28 0.0623058
\(726\) 16211.7 0.828749
\(727\) −2826.10 −0.144174 −0.0720868 0.997398i \(-0.522966\pi\)
−0.0720868 + 0.997398i \(0.522966\pi\)
\(728\) 1572.62 0.0800620
\(729\) 729.000 0.0370370
\(730\) −18255.2 −0.925554
\(731\) −65372.8 −3.30766
\(732\) −13806.1 −0.697114
\(733\) −5649.76 −0.284691 −0.142346 0.989817i \(-0.545464\pi\)
−0.142346 + 0.989817i \(0.545464\pi\)
\(734\) 40699.0 2.04663
\(735\) 16378.7 0.821955
\(736\) 0 0
\(737\) 823.180 0.0411428
\(738\) −7459.65 −0.372078
\(739\) 13970.7 0.695425 0.347713 0.937601i \(-0.386959\pi\)
0.347713 + 0.937601i \(0.386959\pi\)
\(740\) 42409.2 2.10675
\(741\) 9952.99 0.493431
\(742\) −4642.17 −0.229676
\(743\) −24100.2 −1.18997 −0.594987 0.803735i \(-0.702843\pi\)
−0.594987 + 0.803735i \(0.702843\pi\)
\(744\) −1453.97 −0.0716469
\(745\) −21865.1 −1.07527
\(746\) 33192.7 1.62905
\(747\) −1232.40 −0.0603630
\(748\) 4555.21 0.222667
\(749\) −10289.7 −0.501975
\(750\) 9259.33 0.450804
\(751\) 28920.4 1.40522 0.702609 0.711576i \(-0.252018\pi\)
0.702609 + 0.711576i \(0.252018\pi\)
\(752\) 15552.9 0.754197
\(753\) 12854.0 0.622081
\(754\) −2601.72 −0.125662
\(755\) −46820.8 −2.25693
\(756\) −1186.67 −0.0570883
\(757\) 7194.91 0.345447 0.172724 0.984970i \(-0.444743\pi\)
0.172724 + 0.984970i \(0.444743\pi\)
\(758\) 3050.17 0.146157
\(759\) 0 0
\(760\) 2338.73 0.111624
\(761\) −19530.9 −0.930347 −0.465174 0.885219i \(-0.654008\pi\)
−0.465174 + 0.885219i \(0.654008\pi\)
\(762\) 27113.8 1.28902
\(763\) 2093.05 0.0993099
\(764\) 26697.0 1.26422
\(765\) 19968.8 0.943755
\(766\) 20215.8 0.953562
\(767\) −12953.7 −0.609817
\(768\) 9157.43 0.430261
\(769\) −15942.3 −0.747586 −0.373793 0.927512i \(-0.621943\pi\)
−0.373793 + 0.927512i \(0.621943\pi\)
\(770\) 1381.43 0.0646538
\(771\) 7725.90 0.360884
\(772\) −6155.05 −0.286950
\(773\) 787.466 0.0366406 0.0183203 0.999832i \(-0.494168\pi\)
0.0183203 + 0.999832i \(0.494168\pi\)
\(774\) −18674.9 −0.867257
\(775\) 22635.6 1.04915
\(776\) 4141.62 0.191592
\(777\) 4137.07 0.191012
\(778\) −44273.9 −2.04023
\(779\) 7614.55 0.350218
\(780\) −40137.5 −1.84250
\(781\) −3000.73 −0.137483
\(782\) 0 0
\(783\) 194.518 0.00887805
\(784\) 17895.8 0.815223
\(785\) −14237.2 −0.647320
\(786\) 25202.3 1.14369
\(787\) −23394.1 −1.05961 −0.529804 0.848120i \(-0.677734\pi\)
−0.529804 + 0.848120i \(0.677734\pi\)
\(788\) −22859.9 −1.03344
\(789\) 691.691 0.0312102
\(790\) −12257.1 −0.552012
\(791\) −1209.94 −0.0543873
\(792\) 128.933 0.00578464
\(793\) −45553.8 −2.03993
\(794\) −11009.9 −0.492097
\(795\) 11739.3 0.523711
\(796\) 26128.4 1.16344
\(797\) 6320.50 0.280908 0.140454 0.990087i \(-0.455144\pi\)
0.140454 + 0.990087i \(0.455144\pi\)
\(798\) 2302.61 0.102145
\(799\) 35829.3 1.58642
\(800\) 43854.9 1.93813
\(801\) −9252.39 −0.408136
\(802\) 14634.8 0.644356
\(803\) 1027.30 0.0451464
\(804\) −5533.26 −0.242715
\(805\) 0 0
\(806\) −48419.1 −2.11599
\(807\) 3411.89 0.148828
\(808\) 4855.29 0.211397
\(809\) 18787.8 0.816494 0.408247 0.912871i \(-0.366140\pi\)
0.408247 + 0.912871i \(0.366140\pi\)
\(810\) 5704.45 0.247449
\(811\) 9087.68 0.393479 0.196740 0.980456i \(-0.436965\pi\)
0.196740 + 0.980456i \(0.436965\pi\)
\(812\) −316.638 −0.0136845
\(813\) −18472.8 −0.796889
\(814\) −4536.64 −0.195343
\(815\) −44827.1 −1.92665
\(816\) 21818.4 0.936026
\(817\) 19062.7 0.816305
\(818\) −19682.1 −0.841280
\(819\) −3915.47 −0.167054
\(820\) −30707.3 −1.30774
\(821\) 333.265 0.0141669 0.00708346 0.999975i \(-0.497745\pi\)
0.00708346 + 0.999975i \(0.497745\pi\)
\(822\) −27756.2 −1.17775
\(823\) −4879.11 −0.206653 −0.103326 0.994648i \(-0.532949\pi\)
−0.103326 + 0.994648i \(0.532949\pi\)
\(824\) −6260.89 −0.264695
\(825\) −2007.24 −0.0847069
\(826\) −2996.81 −0.126238
\(827\) −26454.1 −1.11233 −0.556167 0.831071i \(-0.687728\pi\)
−0.556167 + 0.831071i \(0.687728\pi\)
\(828\) 0 0
\(829\) −28400.4 −1.18985 −0.594925 0.803781i \(-0.702818\pi\)
−0.594925 + 0.803781i \(0.702818\pi\)
\(830\) −9643.57 −0.403293
\(831\) 9755.78 0.407250
\(832\) −54298.6 −2.26258
\(833\) 41226.5 1.71478
\(834\) −11537.5 −0.479029
\(835\) 31628.0 1.31082
\(836\) −1328.30 −0.0549525
\(837\) 3620.07 0.149496
\(838\) 24580.6 1.01327
\(839\) 13876.5 0.571001 0.285500 0.958379i \(-0.407840\pi\)
0.285500 + 0.958379i \(0.407840\pi\)
\(840\) −920.047 −0.0377912
\(841\) −24337.1 −0.997872
\(842\) −9123.11 −0.373400
\(843\) −2818.56 −0.115156
\(844\) 29844.5 1.21717
\(845\) −94776.0 −3.85845
\(846\) 10235.3 0.415953
\(847\) 6510.05 0.264094
\(848\) 12826.7 0.519422
\(849\) 10279.1 0.415521
\(850\) 89781.5 3.62292
\(851\) 0 0
\(852\) 20170.3 0.811062
\(853\) 7881.44 0.316360 0.158180 0.987410i \(-0.449437\pi\)
0.158180 + 0.987410i \(0.449437\pi\)
\(854\) −10538.8 −0.422283
\(855\) −5822.91 −0.232912
\(856\) −7514.93 −0.300064
\(857\) 42959.8 1.71234 0.856172 0.516690i \(-0.172836\pi\)
0.856172 + 0.516690i \(0.172836\pi\)
\(858\) 4293.63 0.170842
\(859\) −4625.09 −0.183709 −0.0918545 0.995772i \(-0.529279\pi\)
−0.0918545 + 0.995772i \(0.529279\pi\)
\(860\) −76874.5 −3.04814
\(861\) −2995.54 −0.118569
\(862\) −22434.6 −0.886455
\(863\) 4304.92 0.169805 0.0849023 0.996389i \(-0.472942\pi\)
0.0849023 + 0.996389i \(0.472942\pi\)
\(864\) 7013.63 0.276167
\(865\) 39664.7 1.55912
\(866\) −19005.2 −0.745753
\(867\) 35524.1 1.39154
\(868\) −5892.77 −0.230430
\(869\) 689.763 0.0269259
\(870\) 1522.11 0.0593154
\(871\) −18257.2 −0.710244
\(872\) 1528.62 0.0593643
\(873\) −10311.7 −0.399770
\(874\) 0 0
\(875\) 3718.23 0.143656
\(876\) −6905.31 −0.266334
\(877\) −28092.1 −1.08164 −0.540822 0.841137i \(-0.681887\pi\)
−0.540822 + 0.841137i \(0.681887\pi\)
\(878\) −19193.0 −0.737738
\(879\) 1805.81 0.0692929
\(880\) −3817.00 −0.146217
\(881\) 20860.5 0.797741 0.398870 0.917007i \(-0.369402\pi\)
0.398870 + 0.917007i \(0.369402\pi\)
\(882\) 11777.1 0.449610
\(883\) 27719.3 1.05643 0.528216 0.849110i \(-0.322861\pi\)
0.528216 + 0.849110i \(0.322861\pi\)
\(884\) −101030. −3.84388
\(885\) 7578.43 0.287849
\(886\) −25319.8 −0.960086
\(887\) 36604.6 1.38564 0.692821 0.721110i \(-0.256368\pi\)
0.692821 + 0.721110i \(0.256368\pi\)
\(888\) 3021.44 0.114181
\(889\) 10888.0 0.410766
\(890\) −72400.3 −2.72681
\(891\) −321.014 −0.0120700
\(892\) −14600.4 −0.548047
\(893\) −10447.8 −0.391516
\(894\) −15722.1 −0.588173
\(895\) 81000.2 3.02518
\(896\) −2276.25 −0.0848706
\(897\) 0 0
\(898\) −31819.3 −1.18243
\(899\) 965.939 0.0358352
\(900\) 13492.3 0.499715
\(901\) 29548.8 1.09258
\(902\) 3284.85 0.121257
\(903\) −7499.21 −0.276366
\(904\) −883.656 −0.0325110
\(905\) 5781.18 0.212346
\(906\) −33666.6 −1.23454
\(907\) 41509.4 1.51962 0.759812 0.650143i \(-0.225291\pi\)
0.759812 + 0.650143i \(0.225291\pi\)
\(908\) 2184.15 0.0798276
\(909\) −12088.6 −0.441092
\(910\) −30638.7 −1.11611
\(911\) 4044.70 0.147099 0.0735494 0.997292i \(-0.476567\pi\)
0.0735494 + 0.997292i \(0.476567\pi\)
\(912\) −6362.27 −0.231004
\(913\) 542.686 0.0196717
\(914\) −1627.30 −0.0588909
\(915\) 26650.8 0.962895
\(916\) 22387.0 0.807518
\(917\) 10120.4 0.364454
\(918\) 14358.6 0.516235
\(919\) 49226.4 1.76695 0.883476 0.468476i \(-0.155197\pi\)
0.883476 + 0.468476i \(0.155197\pi\)
\(920\) 0 0
\(921\) 5944.59 0.212683
\(922\) −743.567 −0.0265597
\(923\) 66553.0 2.37337
\(924\) 522.549 0.0186045
\(925\) −47038.0 −1.67200
\(926\) −54159.7 −1.92203
\(927\) 15588.2 0.552302
\(928\) 1871.44 0.0661993
\(929\) 47981.6 1.69454 0.847268 0.531166i \(-0.178246\pi\)
0.847268 + 0.531166i \(0.178246\pi\)
\(930\) 28327.2 0.998801
\(931\) −12021.7 −0.423195
\(932\) 10253.8 0.360379
\(933\) 21159.6 0.742479
\(934\) −30515.1 −1.06904
\(935\) −8793.23 −0.307561
\(936\) −2859.59 −0.0998598
\(937\) 43388.1 1.51273 0.756366 0.654149i \(-0.226973\pi\)
0.756366 + 0.654149i \(0.226973\pi\)
\(938\) −4223.78 −0.147027
\(939\) 9578.62 0.332893
\(940\) 42133.1 1.46195
\(941\) 5081.03 0.176022 0.0880110 0.996120i \(-0.471949\pi\)
0.0880110 + 0.996120i \(0.471949\pi\)
\(942\) −10237.3 −0.354085
\(943\) 0 0
\(944\) 8280.39 0.285491
\(945\) 2290.71 0.0788538
\(946\) 8223.49 0.282631
\(947\) −31017.9 −1.06436 −0.532178 0.846632i \(-0.678626\pi\)
−0.532178 + 0.846632i \(0.678626\pi\)
\(948\) −4636.46 −0.158845
\(949\) −22784.4 −0.779359
\(950\) −26180.3 −0.894108
\(951\) 16749.6 0.571128
\(952\) −2315.84 −0.0788410
\(953\) −9479.20 −0.322205 −0.161103 0.986938i \(-0.551505\pi\)
−0.161103 + 0.986938i \(0.551505\pi\)
\(954\) 8441.16 0.286470
\(955\) −51535.0 −1.74621
\(956\) 46732.4 1.58100
\(957\) −85.6559 −0.00289327
\(958\) −22020.5 −0.742642
\(959\) −11145.9 −0.375309
\(960\) 31766.9 1.06799
\(961\) −11814.5 −0.396578
\(962\) 100618. 3.37219
\(963\) 18710.5 0.626103
\(964\) 13254.5 0.442842
\(965\) 11881.5 0.396352
\(966\) 0 0
\(967\) 28758.8 0.956380 0.478190 0.878256i \(-0.341293\pi\)
0.478190 + 0.878256i \(0.341293\pi\)
\(968\) 4754.50 0.157867
\(969\) −14656.8 −0.485906
\(970\) −80689.6 −2.67091
\(971\) 15534.3 0.513408 0.256704 0.966490i \(-0.417363\pi\)
0.256704 + 0.966490i \(0.417363\pi\)
\(972\) 2157.80 0.0712052
\(973\) −4633.05 −0.152650
\(974\) −45138.1 −1.48492
\(975\) 44518.4 1.46229
\(976\) 29119.4 0.955009
\(977\) −38864.3 −1.27265 −0.636326 0.771421i \(-0.719547\pi\)
−0.636326 + 0.771421i \(0.719547\pi\)
\(978\) −32233.0 −1.05388
\(979\) 4074.28 0.133008
\(980\) 48480.0 1.58024
\(981\) −3805.92 −0.123867
\(982\) −10520.5 −0.341876
\(983\) 10259.4 0.332885 0.166442 0.986051i \(-0.446772\pi\)
0.166442 + 0.986051i \(0.446772\pi\)
\(984\) −2187.74 −0.0708766
\(985\) 44128.0 1.42745
\(986\) 3831.29 0.123745
\(987\) 4110.14 0.132550
\(988\) 29460.3 0.948640
\(989\) 0 0
\(990\) −2511.95 −0.0806414
\(991\) −23431.2 −0.751077 −0.375539 0.926807i \(-0.622542\pi\)
−0.375539 + 0.926807i \(0.622542\pi\)
\(992\) 34828.3 1.11472
\(993\) 21214.8 0.677976
\(994\) 15396.9 0.491308
\(995\) −50437.5 −1.60701
\(996\) −3647.83 −0.116050
\(997\) 36845.4 1.17042 0.585209 0.810883i \(-0.301013\pi\)
0.585209 + 0.810883i \(0.301013\pi\)
\(998\) 53387.1 1.69333
\(999\) −7522.71 −0.238246
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.4.a.o.1.2 yes 7
23.22 odd 2 1587.4.a.n.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1587.4.a.n.1.2 7 23.22 odd 2
1587.4.a.o.1.2 yes 7 1.1 even 1 trivial