Properties

Label 1587.4.a.n.1.1
Level $1587$
Weight $4$
Character 1587.1
Self dual yes
Analytic conductor $93.636$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1587,4,Mod(1,1587)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1587.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1587, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,21,38,-10,0,17,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.6360311791\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 47x^{5} - 12x^{4} + 574x^{3} + 240x^{2} - 1436x + 720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.48727\) of defining polynomial
Character \(\chi\) \(=\) 1587.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.48727 q^{2} +3.00000 q^{3} +22.1101 q^{4} -19.2252 q^{5} -16.4618 q^{6} -5.31484 q^{7} -77.4259 q^{8} +9.00000 q^{9} +105.494 q^{10} -51.2932 q^{11} +66.3303 q^{12} +6.63173 q^{13} +29.1640 q^{14} -57.6756 q^{15} +247.976 q^{16} -27.3129 q^{17} -49.3854 q^{18} -68.8864 q^{19} -425.071 q^{20} -15.9445 q^{21} +281.459 q^{22} -232.278 q^{24} +244.609 q^{25} -36.3901 q^{26} +27.0000 q^{27} -117.512 q^{28} +141.818 q^{29} +316.482 q^{30} -178.803 q^{31} -741.302 q^{32} -153.880 q^{33} +149.873 q^{34} +102.179 q^{35} +198.991 q^{36} -26.8290 q^{37} +377.998 q^{38} +19.8952 q^{39} +1488.53 q^{40} -376.262 q^{41} +87.4919 q^{42} -381.273 q^{43} -1134.10 q^{44} -173.027 q^{45} -362.628 q^{47} +743.927 q^{48} -314.752 q^{49} -1342.23 q^{50} -81.9388 q^{51} +146.628 q^{52} -508.353 q^{53} -148.156 q^{54} +986.122 q^{55} +411.507 q^{56} -206.659 q^{57} -778.194 q^{58} +97.9012 q^{59} -1275.21 q^{60} -299.254 q^{61} +981.141 q^{62} -47.8336 q^{63} +2083.92 q^{64} -127.496 q^{65} +844.378 q^{66} -346.675 q^{67} -603.891 q^{68} -560.683 q^{70} -827.048 q^{71} -696.833 q^{72} +630.506 q^{73} +147.218 q^{74} +733.826 q^{75} -1523.08 q^{76} +272.615 q^{77} -109.170 q^{78} -699.342 q^{79} -4767.39 q^{80} +81.0000 q^{81} +2064.65 q^{82} -113.575 q^{83} -352.535 q^{84} +525.096 q^{85} +2092.14 q^{86} +425.454 q^{87} +3971.42 q^{88} +1016.83 q^{89} +949.445 q^{90} -35.2466 q^{91} -536.409 q^{93} +1989.84 q^{94} +1324.35 q^{95} -2223.91 q^{96} -1138.08 q^{97} +1727.13 q^{98} -461.639 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 21 q^{3} + 38 q^{4} - 10 q^{5} + 17 q^{7} - 36 q^{8} + 63 q^{9} + 65 q^{10} - 5 q^{11} + 114 q^{12} + 152 q^{13} - 23 q^{14} - 30 q^{15} + 314 q^{16} + 22 q^{17} - 38 q^{19} - 171 q^{20} + 51 q^{21}+ \cdots - 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.48727 −1.94004 −0.970021 0.243021i \(-0.921862\pi\)
−0.970021 + 0.243021i \(0.921862\pi\)
\(3\) 3.00000 0.577350
\(4\) 22.1101 2.76376
\(5\) −19.2252 −1.71955 −0.859777 0.510669i \(-0.829398\pi\)
−0.859777 + 0.510669i \(0.829398\pi\)
\(6\) −16.4618 −1.12008
\(7\) −5.31484 −0.286975 −0.143487 0.989652i \(-0.545832\pi\)
−0.143487 + 0.989652i \(0.545832\pi\)
\(8\) −77.4259 −3.42177
\(9\) 9.00000 0.333333
\(10\) 105.494 3.33601
\(11\) −51.2932 −1.40595 −0.702976 0.711213i \(-0.748146\pi\)
−0.702976 + 0.711213i \(0.748146\pi\)
\(12\) 66.3303 1.59566
\(13\) 6.63173 0.141485 0.0707427 0.997495i \(-0.477463\pi\)
0.0707427 + 0.997495i \(0.477463\pi\)
\(14\) 29.1640 0.556743
\(15\) −57.6756 −0.992785
\(16\) 247.976 3.87462
\(17\) −27.3129 −0.389668 −0.194834 0.980836i \(-0.562417\pi\)
−0.194834 + 0.980836i \(0.562417\pi\)
\(18\) −49.3854 −0.646681
\(19\) −68.8864 −0.831769 −0.415885 0.909417i \(-0.636528\pi\)
−0.415885 + 0.909417i \(0.636528\pi\)
\(20\) −425.071 −4.75244
\(21\) −15.9445 −0.165685
\(22\) 281.459 2.72761
\(23\) 0 0
\(24\) −232.278 −1.97556
\(25\) 244.609 1.95687
\(26\) −36.3901 −0.274488
\(27\) 27.0000 0.192450
\(28\) −117.512 −0.793130
\(29\) 141.818 0.908102 0.454051 0.890976i \(-0.349978\pi\)
0.454051 + 0.890976i \(0.349978\pi\)
\(30\) 316.482 1.92605
\(31\) −178.803 −1.03594 −0.517968 0.855400i \(-0.673311\pi\)
−0.517968 + 0.855400i \(0.673311\pi\)
\(32\) −741.302 −4.09516
\(33\) −153.880 −0.811727
\(34\) 149.873 0.755972
\(35\) 102.179 0.493468
\(36\) 198.991 0.921254
\(37\) −26.8290 −0.119207 −0.0596034 0.998222i \(-0.518984\pi\)
−0.0596034 + 0.998222i \(0.518984\pi\)
\(38\) 377.998 1.61367
\(39\) 19.8952 0.0816866
\(40\) 1488.53 5.88393
\(41\) −376.262 −1.43323 −0.716613 0.697471i \(-0.754309\pi\)
−0.716613 + 0.697471i \(0.754309\pi\)
\(42\) 87.4919 0.321436
\(43\) −381.273 −1.35217 −0.676087 0.736821i \(-0.736326\pi\)
−0.676087 + 0.736821i \(0.736326\pi\)
\(44\) −1134.10 −3.88572
\(45\) −173.027 −0.573185
\(46\) 0 0
\(47\) −362.628 −1.12542 −0.562710 0.826654i \(-0.690241\pi\)
−0.562710 + 0.826654i \(0.690241\pi\)
\(48\) 743.927 2.23701
\(49\) −314.752 −0.917646
\(50\) −1342.23 −3.79641
\(51\) −81.9388 −0.224975
\(52\) 146.628 0.391032
\(53\) −508.353 −1.31750 −0.658752 0.752360i \(-0.728915\pi\)
−0.658752 + 0.752360i \(0.728915\pi\)
\(54\) −148.156 −0.373361
\(55\) 986.122 2.41761
\(56\) 411.507 0.981962
\(57\) −206.659 −0.480222
\(58\) −778.194 −1.76176
\(59\) 97.9012 0.216028 0.108014 0.994149i \(-0.465551\pi\)
0.108014 + 0.994149i \(0.465551\pi\)
\(60\) −1275.21 −2.74382
\(61\) −299.254 −0.628124 −0.314062 0.949402i \(-0.601690\pi\)
−0.314062 + 0.949402i \(0.601690\pi\)
\(62\) 981.141 2.00976
\(63\) −47.8336 −0.0956582
\(64\) 2083.92 4.07015
\(65\) −127.496 −0.243292
\(66\) 844.378 1.57478
\(67\) −346.675 −0.632136 −0.316068 0.948737i \(-0.602363\pi\)
−0.316068 + 0.948737i \(0.602363\pi\)
\(68\) −603.891 −1.07695
\(69\) 0 0
\(70\) −560.683 −0.957349
\(71\) −827.048 −1.38243 −0.691215 0.722649i \(-0.742924\pi\)
−0.691215 + 0.722649i \(0.742924\pi\)
\(72\) −696.833 −1.14059
\(73\) 630.506 1.01089 0.505446 0.862858i \(-0.331328\pi\)
0.505446 + 0.862858i \(0.331328\pi\)
\(74\) 147.218 0.231266
\(75\) 733.826 1.12980
\(76\) −1523.08 −2.29881
\(77\) 272.615 0.403473
\(78\) −109.170 −0.158476
\(79\) −699.342 −0.995976 −0.497988 0.867184i \(-0.665928\pi\)
−0.497988 + 0.867184i \(0.665928\pi\)
\(80\) −4767.39 −6.66262
\(81\) 81.0000 0.111111
\(82\) 2064.65 2.78052
\(83\) −113.575 −0.150198 −0.0750990 0.997176i \(-0.523927\pi\)
−0.0750990 + 0.997176i \(0.523927\pi\)
\(84\) −352.535 −0.457914
\(85\) 525.096 0.670055
\(86\) 2092.14 2.62328
\(87\) 425.454 0.524293
\(88\) 3971.42 4.81085
\(89\) 1016.83 1.21106 0.605529 0.795824i \(-0.292962\pi\)
0.605529 + 0.795824i \(0.292962\pi\)
\(90\) 949.445 1.11200
\(91\) −35.2466 −0.0406027
\(92\) 0 0
\(93\) −536.409 −0.598097
\(94\) 1989.84 2.18336
\(95\) 1324.35 1.43027
\(96\) −2223.91 −2.36434
\(97\) −1138.08 −1.19128 −0.595640 0.803252i \(-0.703101\pi\)
−0.595640 + 0.803252i \(0.703101\pi\)
\(98\) 1727.13 1.78027
\(99\) −461.639 −0.468651
\(100\) 5408.32 5.40832
\(101\) 95.8409 0.0944211 0.0472105 0.998885i \(-0.484967\pi\)
0.0472105 + 0.998885i \(0.484967\pi\)
\(102\) 449.620 0.436461
\(103\) 254.760 0.243712 0.121856 0.992548i \(-0.461115\pi\)
0.121856 + 0.992548i \(0.461115\pi\)
\(104\) −513.468 −0.484131
\(105\) 306.537 0.284904
\(106\) 2789.47 2.55601
\(107\) −1285.51 −1.16144 −0.580722 0.814102i \(-0.697230\pi\)
−0.580722 + 0.814102i \(0.697230\pi\)
\(108\) 596.973 0.531886
\(109\) −29.1605 −0.0256245 −0.0128122 0.999918i \(-0.504078\pi\)
−0.0128122 + 0.999918i \(0.504078\pi\)
\(110\) −5411.12 −4.69027
\(111\) −80.4869 −0.0688241
\(112\) −1317.95 −1.11192
\(113\) 727.070 0.605283 0.302642 0.953104i \(-0.402131\pi\)
0.302642 + 0.953104i \(0.402131\pi\)
\(114\) 1133.99 0.931651
\(115\) 0 0
\(116\) 3135.61 2.50978
\(117\) 59.6856 0.0471618
\(118\) −537.210 −0.419104
\(119\) 145.164 0.111825
\(120\) 4465.59 3.39709
\(121\) 1299.99 0.976703
\(122\) 1642.09 1.21859
\(123\) −1128.79 −0.827474
\(124\) −3953.36 −2.86308
\(125\) −2299.50 −1.64539
\(126\) 262.476 0.185581
\(127\) −655.648 −0.458105 −0.229053 0.973414i \(-0.573563\pi\)
−0.229053 + 0.973414i \(0.573563\pi\)
\(128\) −5504.59 −3.80111
\(129\) −1143.82 −0.780679
\(130\) 699.606 0.471996
\(131\) 65.6615 0.0437929 0.0218965 0.999760i \(-0.493030\pi\)
0.0218965 + 0.999760i \(0.493030\pi\)
\(132\) −3402.29 −2.24342
\(133\) 366.120 0.238697
\(134\) 1902.30 1.22637
\(135\) −519.081 −0.330928
\(136\) 2114.73 1.33336
\(137\) 1115.99 0.695955 0.347977 0.937503i \(-0.386869\pi\)
0.347977 + 0.937503i \(0.386869\pi\)
\(138\) 0 0
\(139\) −698.532 −0.426250 −0.213125 0.977025i \(-0.568364\pi\)
−0.213125 + 0.977025i \(0.568364\pi\)
\(140\) 2259.19 1.36383
\(141\) −1087.88 −0.649762
\(142\) 4538.23 2.68197
\(143\) −340.163 −0.198922
\(144\) 2231.78 1.29154
\(145\) −2726.48 −1.56153
\(146\) −3459.75 −1.96117
\(147\) −944.257 −0.529803
\(148\) −593.191 −0.329459
\(149\) 2466.15 1.35594 0.677969 0.735090i \(-0.262860\pi\)
0.677969 + 0.735090i \(0.262860\pi\)
\(150\) −4026.70 −2.19186
\(151\) −2782.49 −1.49958 −0.749788 0.661678i \(-0.769845\pi\)
−0.749788 + 0.661678i \(0.769845\pi\)
\(152\) 5333.59 2.84613
\(153\) −245.816 −0.129889
\(154\) −1495.91 −0.782754
\(155\) 3437.53 1.78135
\(156\) 439.885 0.225763
\(157\) −603.164 −0.306610 −0.153305 0.988179i \(-0.548992\pi\)
−0.153305 + 0.988179i \(0.548992\pi\)
\(158\) 3837.48 1.93224
\(159\) −1525.06 −0.760661
\(160\) 14251.7 7.04184
\(161\) 0 0
\(162\) −444.469 −0.215560
\(163\) −206.664 −0.0993076 −0.0496538 0.998766i \(-0.515812\pi\)
−0.0496538 + 0.998766i \(0.515812\pi\)
\(164\) −8319.20 −3.96110
\(165\) 2958.37 1.39581
\(166\) 623.214 0.291390
\(167\) −3335.19 −1.54542 −0.772709 0.634761i \(-0.781099\pi\)
−0.772709 + 0.634761i \(0.781099\pi\)
\(168\) 1234.52 0.566936
\(169\) −2153.02 −0.979982
\(170\) −2881.34 −1.29994
\(171\) −619.977 −0.277256
\(172\) −8429.98 −3.73709
\(173\) 3784.96 1.66338 0.831692 0.555237i \(-0.187372\pi\)
0.831692 + 0.555237i \(0.187372\pi\)
\(174\) −2334.58 −1.01715
\(175\) −1300.06 −0.561571
\(176\) −12719.5 −5.44754
\(177\) 293.704 0.124724
\(178\) −5579.63 −2.34950
\(179\) −4343.39 −1.81363 −0.906817 0.421525i \(-0.861495\pi\)
−0.906817 + 0.421525i \(0.861495\pi\)
\(180\) −3825.64 −1.58415
\(181\) 141.305 0.0580282 0.0290141 0.999579i \(-0.490763\pi\)
0.0290141 + 0.999579i \(0.490763\pi\)
\(182\) 193.407 0.0787710
\(183\) −897.763 −0.362648
\(184\) 0 0
\(185\) 515.792 0.204983
\(186\) 2943.42 1.16033
\(187\) 1400.97 0.547855
\(188\) −8017.75 −3.11040
\(189\) −143.501 −0.0552283
\(190\) −7267.09 −2.77479
\(191\) −373.701 −0.141571 −0.0707855 0.997492i \(-0.522551\pi\)
−0.0707855 + 0.997492i \(0.522551\pi\)
\(192\) 6251.75 2.34990
\(193\) 1719.22 0.641204 0.320602 0.947214i \(-0.396115\pi\)
0.320602 + 0.947214i \(0.396115\pi\)
\(194\) 6244.93 2.31113
\(195\) −382.489 −0.140465
\(196\) −6959.21 −2.53615
\(197\) −1538.98 −0.556587 −0.278294 0.960496i \(-0.589769\pi\)
−0.278294 + 0.960496i \(0.589769\pi\)
\(198\) 2533.14 0.909202
\(199\) −3555.77 −1.26664 −0.633322 0.773889i \(-0.718309\pi\)
−0.633322 + 0.773889i \(0.718309\pi\)
\(200\) −18939.0 −6.69596
\(201\) −1040.03 −0.364964
\(202\) −525.905 −0.183181
\(203\) −753.741 −0.260602
\(204\) −1811.67 −0.621777
\(205\) 7233.72 2.46451
\(206\) −1397.94 −0.472811
\(207\) 0 0
\(208\) 1644.51 0.548203
\(209\) 3533.40 1.16943
\(210\) −1682.05 −0.552726
\(211\) 2758.93 0.900155 0.450077 0.892990i \(-0.351396\pi\)
0.450077 + 0.892990i \(0.351396\pi\)
\(212\) −11239.7 −3.64127
\(213\) −2481.14 −0.798146
\(214\) 7053.91 2.25325
\(215\) 7330.04 2.32514
\(216\) −2090.50 −0.658521
\(217\) 950.311 0.297287
\(218\) 160.011 0.0497125
\(219\) 1891.52 0.583639
\(220\) 21803.3 6.68171
\(221\) −181.132 −0.0551323
\(222\) 441.653 0.133522
\(223\) 4373.87 1.31344 0.656718 0.754137i \(-0.271944\pi\)
0.656718 + 0.754137i \(0.271944\pi\)
\(224\) 3939.91 1.17521
\(225\) 2201.48 0.652289
\(226\) −3989.63 −1.17427
\(227\) −4836.24 −1.41407 −0.707033 0.707181i \(-0.749967\pi\)
−0.707033 + 0.707181i \(0.749967\pi\)
\(228\) −4569.25 −1.32722
\(229\) 1264.66 0.364939 0.182469 0.983212i \(-0.441591\pi\)
0.182469 + 0.983212i \(0.441591\pi\)
\(230\) 0 0
\(231\) 817.846 0.232945
\(232\) −10980.4 −3.10732
\(233\) 5574.72 1.56743 0.783716 0.621119i \(-0.213322\pi\)
0.783716 + 0.621119i \(0.213322\pi\)
\(234\) −327.511 −0.0914959
\(235\) 6971.60 1.93522
\(236\) 2164.61 0.597050
\(237\) −2098.03 −0.575027
\(238\) −796.553 −0.216945
\(239\) −3145.32 −0.851272 −0.425636 0.904894i \(-0.639950\pi\)
−0.425636 + 0.904894i \(0.639950\pi\)
\(240\) −14302.2 −3.84667
\(241\) −1572.24 −0.420236 −0.210118 0.977676i \(-0.567385\pi\)
−0.210118 + 0.977676i \(0.567385\pi\)
\(242\) −7133.40 −1.89485
\(243\) 243.000 0.0641500
\(244\) −6616.54 −1.73599
\(245\) 6051.18 1.57794
\(246\) 6193.95 1.60533
\(247\) −456.836 −0.117683
\(248\) 13844.0 3.54474
\(249\) −340.724 −0.0867169
\(250\) 12618.0 3.19212
\(251\) 6799.05 1.70977 0.854885 0.518818i \(-0.173628\pi\)
0.854885 + 0.518818i \(0.173628\pi\)
\(252\) −1057.61 −0.264377
\(253\) 0 0
\(254\) 3597.72 0.888744
\(255\) 1575.29 0.386857
\(256\) 13533.8 3.30416
\(257\) −5636.97 −1.36819 −0.684094 0.729394i \(-0.739802\pi\)
−0.684094 + 0.729394i \(0.739802\pi\)
\(258\) 6276.43 1.51455
\(259\) 142.592 0.0342093
\(260\) −2818.96 −0.672401
\(261\) 1276.36 0.302701
\(262\) −360.302 −0.0849601
\(263\) −724.284 −0.169815 −0.0849073 0.996389i \(-0.527059\pi\)
−0.0849073 + 0.996389i \(0.527059\pi\)
\(264\) 11914.3 2.77755
\(265\) 9773.20 2.26552
\(266\) −2009.00 −0.463081
\(267\) 3050.50 0.699204
\(268\) −7665.02 −1.74707
\(269\) −5092.24 −1.15420 −0.577099 0.816674i \(-0.695815\pi\)
−0.577099 + 0.816674i \(0.695815\pi\)
\(270\) 2848.33 0.642015
\(271\) 2487.64 0.557613 0.278807 0.960347i \(-0.410061\pi\)
0.278807 + 0.960347i \(0.410061\pi\)
\(272\) −6772.94 −1.50982
\(273\) −105.740 −0.0234420
\(274\) −6123.76 −1.35018
\(275\) −12546.8 −2.75126
\(276\) 0 0
\(277\) 2847.48 0.617648 0.308824 0.951119i \(-0.400065\pi\)
0.308824 + 0.951119i \(0.400065\pi\)
\(278\) 3833.03 0.826943
\(279\) −1609.23 −0.345312
\(280\) −7911.30 −1.68854
\(281\) 8323.12 1.76696 0.883480 0.468469i \(-0.155194\pi\)
0.883480 + 0.468469i \(0.155194\pi\)
\(282\) 5969.51 1.26057
\(283\) 1594.24 0.334869 0.167434 0.985883i \(-0.446452\pi\)
0.167434 + 0.985883i \(0.446452\pi\)
\(284\) −18286.1 −3.82071
\(285\) 3973.06 0.825768
\(286\) 1866.56 0.385917
\(287\) 1999.77 0.411299
\(288\) −6671.72 −1.36505
\(289\) −4167.00 −0.848159
\(290\) 14960.9 3.02944
\(291\) −3414.23 −0.687786
\(292\) 13940.5 2.79387
\(293\) 6172.93 1.23081 0.615403 0.788212i \(-0.288993\pi\)
0.615403 + 0.788212i \(0.288993\pi\)
\(294\) 5181.39 1.02784
\(295\) −1882.17 −0.371472
\(296\) 2077.26 0.407899
\(297\) −1384.92 −0.270576
\(298\) −13532.4 −2.63058
\(299\) 0 0
\(300\) 16225.0 3.12249
\(301\) 2026.40 0.388040
\(302\) 15268.3 2.90924
\(303\) 287.523 0.0545140
\(304\) −17082.2 −3.22279
\(305\) 5753.23 1.08009
\(306\) 1348.86 0.251991
\(307\) −2057.81 −0.382558 −0.191279 0.981536i \(-0.561264\pi\)
−0.191279 + 0.981536i \(0.561264\pi\)
\(308\) 6027.55 1.11510
\(309\) 764.281 0.140707
\(310\) −18862.6 −3.45589
\(311\) 646.726 0.117918 0.0589589 0.998260i \(-0.481222\pi\)
0.0589589 + 0.998260i \(0.481222\pi\)
\(312\) −1540.40 −0.279513
\(313\) 2486.32 0.448995 0.224497 0.974475i \(-0.427926\pi\)
0.224497 + 0.974475i \(0.427926\pi\)
\(314\) 3309.72 0.594836
\(315\) 919.610 0.164489
\(316\) −15462.5 −2.75264
\(317\) 774.946 0.137304 0.0686519 0.997641i \(-0.478130\pi\)
0.0686519 + 0.997641i \(0.478130\pi\)
\(318\) 8368.41 1.47572
\(319\) −7274.31 −1.27675
\(320\) −40063.7 −6.99885
\(321\) −3856.52 −0.670560
\(322\) 0 0
\(323\) 1881.49 0.324114
\(324\) 1790.92 0.307085
\(325\) 1622.18 0.276868
\(326\) 1134.02 0.192661
\(327\) −87.4814 −0.0147943
\(328\) 29132.4 4.90418
\(329\) 1927.31 0.322967
\(330\) −16233.3 −2.70793
\(331\) −8490.89 −1.40998 −0.704988 0.709220i \(-0.749047\pi\)
−0.704988 + 0.709220i \(0.749047\pi\)
\(332\) −2511.15 −0.415112
\(333\) −241.461 −0.0397356
\(334\) 18301.1 2.99817
\(335\) 6664.90 1.08699
\(336\) −3953.86 −0.641966
\(337\) 2092.20 0.338188 0.169094 0.985600i \(-0.445916\pi\)
0.169094 + 0.985600i \(0.445916\pi\)
\(338\) 11814.2 1.90121
\(339\) 2181.21 0.349460
\(340\) 11609.9 1.85187
\(341\) 9171.38 1.45648
\(342\) 3401.98 0.537889
\(343\) 3495.85 0.550315
\(344\) 29520.4 4.62684
\(345\) 0 0
\(346\) −20769.1 −3.22704
\(347\) −1206.65 −0.186675 −0.0933374 0.995635i \(-0.529754\pi\)
−0.0933374 + 0.995635i \(0.529754\pi\)
\(348\) 9406.84 1.44902
\(349\) 11947.6 1.83249 0.916246 0.400616i \(-0.131204\pi\)
0.916246 + 0.400616i \(0.131204\pi\)
\(350\) 7133.75 1.08947
\(351\) 179.057 0.0272289
\(352\) 38023.8 5.75760
\(353\) 1261.25 0.190169 0.0950844 0.995469i \(-0.469688\pi\)
0.0950844 + 0.995469i \(0.469688\pi\)
\(354\) −1611.63 −0.241970
\(355\) 15900.2 2.37716
\(356\) 22482.3 3.34707
\(357\) 435.492 0.0645621
\(358\) 23833.4 3.51852
\(359\) −8675.35 −1.27540 −0.637699 0.770286i \(-0.720113\pi\)
−0.637699 + 0.770286i \(0.720113\pi\)
\(360\) 13396.8 1.96131
\(361\) −2113.67 −0.308160
\(362\) −775.377 −0.112577
\(363\) 3899.98 0.563900
\(364\) −779.306 −0.112216
\(365\) −12121.6 −1.73828
\(366\) 4926.26 0.703552
\(367\) 2638.05 0.375218 0.187609 0.982244i \(-0.439926\pi\)
0.187609 + 0.982244i \(0.439926\pi\)
\(368\) 0 0
\(369\) −3386.36 −0.477742
\(370\) −2830.29 −0.397675
\(371\) 2701.82 0.378090
\(372\) −11860.1 −1.65300
\(373\) −3692.27 −0.512542 −0.256271 0.966605i \(-0.582494\pi\)
−0.256271 + 0.966605i \(0.582494\pi\)
\(374\) −7687.48 −1.06286
\(375\) −6898.49 −0.949965
\(376\) 28076.8 3.85093
\(377\) 940.499 0.128483
\(378\) 787.427 0.107145
\(379\) 7507.48 1.01750 0.508751 0.860914i \(-0.330107\pi\)
0.508751 + 0.860914i \(0.330107\pi\)
\(380\) 29281.6 3.95293
\(381\) −1966.94 −0.264487
\(382\) 2050.60 0.274654
\(383\) 11075.6 1.47764 0.738822 0.673901i \(-0.235383\pi\)
0.738822 + 0.673901i \(0.235383\pi\)
\(384\) −16513.8 −2.19457
\(385\) −5241.08 −0.693793
\(386\) −9433.84 −1.24396
\(387\) −3431.45 −0.450725
\(388\) −25163.0 −3.29241
\(389\) 760.409 0.0991113 0.0495556 0.998771i \(-0.484219\pi\)
0.0495556 + 0.998771i \(0.484219\pi\)
\(390\) 2098.82 0.272507
\(391\) 0 0
\(392\) 24370.0 3.13998
\(393\) 196.984 0.0252838
\(394\) 8444.79 1.07980
\(395\) 13445.0 1.71264
\(396\) −10206.9 −1.29524
\(397\) −8412.57 −1.06351 −0.531757 0.846897i \(-0.678468\pi\)
−0.531757 + 0.846897i \(0.678468\pi\)
\(398\) 19511.5 2.45734
\(399\) 1098.36 0.137812
\(400\) 60657.0 7.58212
\(401\) −6090.46 −0.758462 −0.379231 0.925302i \(-0.623811\pi\)
−0.379231 + 0.925302i \(0.623811\pi\)
\(402\) 5706.90 0.708045
\(403\) −1185.77 −0.146570
\(404\) 2119.05 0.260957
\(405\) −1557.24 −0.191062
\(406\) 4135.98 0.505579
\(407\) 1376.14 0.167599
\(408\) 6344.18 0.769813
\(409\) −10320.5 −1.24772 −0.623859 0.781537i \(-0.714436\pi\)
−0.623859 + 0.781537i \(0.714436\pi\)
\(410\) −39693.3 −4.78125
\(411\) 3347.98 0.401810
\(412\) 5632.78 0.673561
\(413\) −520.330 −0.0619946
\(414\) 0 0
\(415\) 2183.50 0.258274
\(416\) −4916.12 −0.579405
\(417\) −2095.60 −0.246095
\(418\) −19388.7 −2.26874
\(419\) 869.329 0.101359 0.0506796 0.998715i \(-0.483861\pi\)
0.0506796 + 0.998715i \(0.483861\pi\)
\(420\) 6777.56 0.787407
\(421\) −16729.8 −1.93672 −0.968362 0.249551i \(-0.919717\pi\)
−0.968362 + 0.249551i \(0.919717\pi\)
\(422\) −15139.0 −1.74634
\(423\) −3263.65 −0.375140
\(424\) 39359.7 4.50820
\(425\) −6680.97 −0.762529
\(426\) 13614.7 1.54844
\(427\) 1590.49 0.180256
\(428\) −28422.7 −3.20995
\(429\) −1020.49 −0.114848
\(430\) −40221.9 −4.51087
\(431\) 5021.18 0.561164 0.280582 0.959830i \(-0.409473\pi\)
0.280582 + 0.959830i \(0.409473\pi\)
\(432\) 6695.35 0.745671
\(433\) 7884.30 0.875047 0.437523 0.899207i \(-0.355856\pi\)
0.437523 + 0.899207i \(0.355856\pi\)
\(434\) −5214.61 −0.576749
\(435\) −8179.45 −0.901551
\(436\) −644.741 −0.0708199
\(437\) 0 0
\(438\) −10379.3 −1.13228
\(439\) 6487.86 0.705350 0.352675 0.935746i \(-0.385272\pi\)
0.352675 + 0.935746i \(0.385272\pi\)
\(440\) −76351.4 −8.27252
\(441\) −2832.77 −0.305882
\(442\) 993.919 0.106959
\(443\) 15403.3 1.65200 0.825998 0.563673i \(-0.190612\pi\)
0.825998 + 0.563673i \(0.190612\pi\)
\(444\) −1779.57 −0.190213
\(445\) −19548.8 −2.08248
\(446\) −24000.6 −2.54812
\(447\) 7398.45 0.782852
\(448\) −11075.7 −1.16803
\(449\) 308.829 0.0324600 0.0162300 0.999868i \(-0.494834\pi\)
0.0162300 + 0.999868i \(0.494834\pi\)
\(450\) −12080.1 −1.26547
\(451\) 19299.7 2.01505
\(452\) 16075.6 1.67286
\(453\) −8347.47 −0.865781
\(454\) 26537.8 2.74335
\(455\) 677.623 0.0698186
\(456\) 16000.8 1.64321
\(457\) 13936.9 1.42657 0.713283 0.700876i \(-0.247207\pi\)
0.713283 + 0.700876i \(0.247207\pi\)
\(458\) −6939.52 −0.707997
\(459\) −737.449 −0.0749916
\(460\) 0 0
\(461\) 12200.6 1.23262 0.616309 0.787504i \(-0.288627\pi\)
0.616309 + 0.787504i \(0.288627\pi\)
\(462\) −4487.74 −0.451923
\(463\) 14019.6 1.40723 0.703615 0.710581i \(-0.251568\pi\)
0.703615 + 0.710581i \(0.251568\pi\)
\(464\) 35167.5 3.51855
\(465\) 10312.6 1.02846
\(466\) −30590.0 −3.04088
\(467\) −19792.4 −1.96120 −0.980601 0.196014i \(-0.937200\pi\)
−0.980601 + 0.196014i \(0.937200\pi\)
\(468\) 1319.65 0.130344
\(469\) 1842.52 0.181407
\(470\) −38255.0 −3.75441
\(471\) −1809.49 −0.177021
\(472\) −7580.09 −0.739199
\(473\) 19556.7 1.90109
\(474\) 11512.4 1.11558
\(475\) −16850.2 −1.62766
\(476\) 3209.59 0.309057
\(477\) −4575.18 −0.439168
\(478\) 17259.2 1.65150
\(479\) −9098.87 −0.867929 −0.433965 0.900930i \(-0.642886\pi\)
−0.433965 + 0.900930i \(0.642886\pi\)
\(480\) 42755.1 4.06561
\(481\) −177.922 −0.0168660
\(482\) 8627.31 0.815276
\(483\) 0 0
\(484\) 28743.0 2.69938
\(485\) 21879.7 2.04847
\(486\) −1333.41 −0.124454
\(487\) 10332.6 0.961423 0.480711 0.876879i \(-0.340378\pi\)
0.480711 + 0.876879i \(0.340378\pi\)
\(488\) 23170.0 2.14930
\(489\) −619.991 −0.0573353
\(490\) −33204.4 −3.06127
\(491\) 184.177 0.0169283 0.00846416 0.999964i \(-0.497306\pi\)
0.00846416 + 0.999964i \(0.497306\pi\)
\(492\) −24957.6 −2.28694
\(493\) −3873.47 −0.353858
\(494\) 2506.78 0.228310
\(495\) 8875.10 0.805871
\(496\) −44338.9 −4.01386
\(497\) 4395.63 0.396722
\(498\) 1869.64 0.168234
\(499\) 9165.68 0.822269 0.411135 0.911575i \(-0.365133\pi\)
0.411135 + 0.911575i \(0.365133\pi\)
\(500\) −50842.1 −4.54746
\(501\) −10005.6 −0.892247
\(502\) −37308.2 −3.31702
\(503\) 5462.01 0.484173 0.242086 0.970255i \(-0.422168\pi\)
0.242086 + 0.970255i \(0.422168\pi\)
\(504\) 3703.56 0.327321
\(505\) −1842.56 −0.162362
\(506\) 0 0
\(507\) −6459.06 −0.565793
\(508\) −14496.5 −1.26609
\(509\) 9415.87 0.819944 0.409972 0.912098i \(-0.365539\pi\)
0.409972 + 0.912098i \(0.365539\pi\)
\(510\) −8644.03 −0.750518
\(511\) −3351.04 −0.290100
\(512\) −30227.0 −2.60910
\(513\) −1859.93 −0.160074
\(514\) 30931.6 2.65434
\(515\) −4897.82 −0.419075
\(516\) −25289.9 −2.15761
\(517\) 18600.4 1.58229
\(518\) −782.439 −0.0663675
\(519\) 11354.9 0.960355
\(520\) 9871.52 0.832490
\(521\) −18276.1 −1.53683 −0.768416 0.639951i \(-0.778955\pi\)
−0.768416 + 0.639951i \(0.778955\pi\)
\(522\) −7003.75 −0.587252
\(523\) −4461.02 −0.372977 −0.186488 0.982457i \(-0.559711\pi\)
−0.186488 + 0.982457i \(0.559711\pi\)
\(524\) 1451.78 0.121033
\(525\) −3900.17 −0.324223
\(526\) 3974.34 0.329447
\(527\) 4883.64 0.403671
\(528\) −38158.4 −3.14514
\(529\) 0 0
\(530\) −53628.2 −4.39520
\(531\) 881.111 0.0720094
\(532\) 8094.96 0.659701
\(533\) −2495.27 −0.202781
\(534\) −16738.9 −1.35649
\(535\) 24714.1 1.99717
\(536\) 26841.6 2.16303
\(537\) −13030.2 −1.04710
\(538\) 27942.5 2.23919
\(539\) 16144.7 1.29017
\(540\) −11476.9 −0.914608
\(541\) −15313.0 −1.21692 −0.608462 0.793583i \(-0.708213\pi\)
−0.608462 + 0.793583i \(0.708213\pi\)
\(542\) −13650.3 −1.08179
\(543\) 423.914 0.0335026
\(544\) 20247.1 1.59575
\(545\) 560.616 0.0440627
\(546\) 580.222 0.0454784
\(547\) −13018.3 −1.01759 −0.508795 0.860888i \(-0.669909\pi\)
−0.508795 + 0.860888i \(0.669909\pi\)
\(548\) 24674.7 1.92345
\(549\) −2693.29 −0.209375
\(550\) 68847.4 5.33757
\(551\) −9769.34 −0.755332
\(552\) 0 0
\(553\) 3716.89 0.285820
\(554\) −15624.9 −1.19826
\(555\) 1547.38 0.118347
\(556\) −15444.6 −1.17805
\(557\) 20343.1 1.54751 0.773756 0.633484i \(-0.218376\pi\)
0.773756 + 0.633484i \(0.218376\pi\)
\(558\) 8830.26 0.669919
\(559\) −2528.50 −0.191313
\(560\) 25337.9 1.91200
\(561\) 4202.90 0.316304
\(562\) −45671.2 −3.42798
\(563\) 11288.3 0.845019 0.422510 0.906358i \(-0.361149\pi\)
0.422510 + 0.906358i \(0.361149\pi\)
\(564\) −24053.2 −1.79579
\(565\) −13978.1 −1.04082
\(566\) −8748.04 −0.649660
\(567\) −430.502 −0.0318861
\(568\) 64034.9 4.73036
\(569\) −26378.4 −1.94348 −0.971740 0.236056i \(-0.924145\pi\)
−0.971740 + 0.236056i \(0.924145\pi\)
\(570\) −21801.3 −1.60203
\(571\) 2913.64 0.213541 0.106770 0.994284i \(-0.465949\pi\)
0.106770 + 0.994284i \(0.465949\pi\)
\(572\) −7521.03 −0.549773
\(573\) −1121.10 −0.0817360
\(574\) −10973.3 −0.797938
\(575\) 0 0
\(576\) 18755.3 1.35672
\(577\) 9221.13 0.665305 0.332652 0.943050i \(-0.392056\pi\)
0.332652 + 0.943050i \(0.392056\pi\)
\(578\) 22865.5 1.64546
\(579\) 5157.67 0.370200
\(580\) −60282.8 −4.31570
\(581\) 603.631 0.0431030
\(582\) 18734.8 1.33433
\(583\) 26075.1 1.85235
\(584\) −48817.5 −3.45904
\(585\) −1147.47 −0.0810973
\(586\) −33872.5 −2.38782
\(587\) −19467.8 −1.36886 −0.684432 0.729077i \(-0.739950\pi\)
−0.684432 + 0.729077i \(0.739950\pi\)
\(588\) −20877.6 −1.46425
\(589\) 12317.1 0.861659
\(590\) 10328.0 0.720671
\(591\) −4616.94 −0.321346
\(592\) −6652.93 −0.461881
\(593\) −15038.6 −1.04142 −0.520708 0.853735i \(-0.674332\pi\)
−0.520708 + 0.853735i \(0.674332\pi\)
\(594\) 7599.41 0.524928
\(595\) −2790.81 −0.192289
\(596\) 54526.8 3.74749
\(597\) −10667.3 −0.731297
\(598\) 0 0
\(599\) −19320.4 −1.31788 −0.658942 0.752194i \(-0.728996\pi\)
−0.658942 + 0.752194i \(0.728996\pi\)
\(600\) −56817.1 −3.86591
\(601\) 23266.2 1.57912 0.789558 0.613676i \(-0.210310\pi\)
0.789558 + 0.613676i \(0.210310\pi\)
\(602\) −11119.4 −0.752813
\(603\) −3120.08 −0.210712
\(604\) −61521.2 −4.14447
\(605\) −24992.6 −1.67949
\(606\) −1577.71 −0.105760
\(607\) −8433.69 −0.563942 −0.281971 0.959423i \(-0.590988\pi\)
−0.281971 + 0.959423i \(0.590988\pi\)
\(608\) 51065.6 3.40622
\(609\) −2261.22 −0.150459
\(610\) −31569.5 −2.09543
\(611\) −2404.85 −0.159231
\(612\) −5435.02 −0.358983
\(613\) 6879.73 0.453294 0.226647 0.973977i \(-0.427224\pi\)
0.226647 + 0.973977i \(0.427224\pi\)
\(614\) 11291.7 0.742178
\(615\) 21701.2 1.42289
\(616\) −21107.5 −1.38059
\(617\) −6232.26 −0.406647 −0.203324 0.979112i \(-0.565174\pi\)
−0.203324 + 0.979112i \(0.565174\pi\)
\(618\) −4193.82 −0.272977
\(619\) 4161.10 0.270192 0.135096 0.990833i \(-0.456866\pi\)
0.135096 + 0.990833i \(0.456866\pi\)
\(620\) 76004.1 4.92322
\(621\) 0 0
\(622\) −3548.76 −0.228766
\(623\) −5404.31 −0.347543
\(624\) 4933.52 0.316505
\(625\) 13632.3 0.872464
\(626\) −13643.1 −0.871069
\(627\) 10600.2 0.675170
\(628\) −13336.0 −0.847397
\(629\) 732.777 0.0464511
\(630\) −5046.15 −0.319116
\(631\) 12240.1 0.772218 0.386109 0.922453i \(-0.373819\pi\)
0.386109 + 0.922453i \(0.373819\pi\)
\(632\) 54147.2 3.40801
\(633\) 8276.80 0.519705
\(634\) −4252.34 −0.266375
\(635\) 12605.0 0.787737
\(636\) −33719.2 −2.10229
\(637\) −2087.35 −0.129833
\(638\) 39916.1 2.47695
\(639\) −7443.43 −0.460810
\(640\) 105827. 6.53621
\(641\) 31162.1 1.92017 0.960085 0.279709i \(-0.0902378\pi\)
0.960085 + 0.279709i \(0.0902378\pi\)
\(642\) 21161.7 1.30091
\(643\) −6621.17 −0.406086 −0.203043 0.979170i \(-0.565083\pi\)
−0.203043 + 0.979170i \(0.565083\pi\)
\(644\) 0 0
\(645\) 21990.1 1.34242
\(646\) −10324.2 −0.628795
\(647\) −12312.1 −0.748126 −0.374063 0.927403i \(-0.622036\pi\)
−0.374063 + 0.927403i \(0.622036\pi\)
\(648\) −6271.50 −0.380197
\(649\) −5021.67 −0.303725
\(650\) −8901.32 −0.537136
\(651\) 2850.93 0.171639
\(652\) −4569.35 −0.274463
\(653\) 23980.9 1.43713 0.718565 0.695460i \(-0.244799\pi\)
0.718565 + 0.695460i \(0.244799\pi\)
\(654\) 480.034 0.0287015
\(655\) −1262.36 −0.0753043
\(656\) −93303.9 −5.55321
\(657\) 5674.55 0.336964
\(658\) −10575.7 −0.626570
\(659\) −9997.24 −0.590952 −0.295476 0.955350i \(-0.595478\pi\)
−0.295476 + 0.955350i \(0.595478\pi\)
\(660\) 65409.8 3.85769
\(661\) −31185.4 −1.83506 −0.917529 0.397669i \(-0.869819\pi\)
−0.917529 + 0.397669i \(0.869819\pi\)
\(662\) 46591.8 2.73541
\(663\) −543.396 −0.0318307
\(664\) 8793.62 0.513944
\(665\) −7038.74 −0.410452
\(666\) 1324.96 0.0770888
\(667\) 0 0
\(668\) −73741.4 −4.27117
\(669\) 13121.6 0.758312
\(670\) −36572.1 −2.10881
\(671\) 15349.7 0.883113
\(672\) 11819.7 0.678505
\(673\) 8399.39 0.481089 0.240544 0.970638i \(-0.422674\pi\)
0.240544 + 0.970638i \(0.422674\pi\)
\(674\) −11480.5 −0.656100
\(675\) 6604.43 0.376599
\(676\) −47603.5 −2.70844
\(677\) 12550.9 0.712513 0.356257 0.934388i \(-0.384053\pi\)
0.356257 + 0.934388i \(0.384053\pi\)
\(678\) −11968.9 −0.677968
\(679\) 6048.70 0.341867
\(680\) −40656.1 −2.29278
\(681\) −14508.7 −0.816411
\(682\) −50325.8 −2.82562
\(683\) 535.762 0.0300152 0.0150076 0.999887i \(-0.495223\pi\)
0.0150076 + 0.999887i \(0.495223\pi\)
\(684\) −13707.8 −0.766271
\(685\) −21455.2 −1.19673
\(686\) −19182.7 −1.06764
\(687\) 3793.98 0.210698
\(688\) −94546.4 −5.23917
\(689\) −3371.26 −0.186408
\(690\) 0 0
\(691\) −1756.89 −0.0967227 −0.0483614 0.998830i \(-0.515400\pi\)
−0.0483614 + 0.998830i \(0.515400\pi\)
\(692\) 83685.9 4.59720
\(693\) 2453.54 0.134491
\(694\) 6621.19 0.362157
\(695\) 13429.4 0.732960
\(696\) −32941.2 −1.79401
\(697\) 10276.8 0.558482
\(698\) −65559.6 −3.55511
\(699\) 16724.1 0.904958
\(700\) −28744.4 −1.55205
\(701\) −30446.3 −1.64043 −0.820214 0.572057i \(-0.806146\pi\)
−0.820214 + 0.572057i \(0.806146\pi\)
\(702\) −982.532 −0.0528252
\(703\) 1848.15 0.0991526
\(704\) −106891. −5.72244
\(705\) 20914.8 1.11730
\(706\) −6920.82 −0.368935
\(707\) −509.379 −0.0270964
\(708\) 6493.82 0.344707
\(709\) −2654.68 −0.140619 −0.0703093 0.997525i \(-0.522399\pi\)
−0.0703093 + 0.997525i \(0.522399\pi\)
\(710\) −87248.5 −4.61180
\(711\) −6294.08 −0.331992
\(712\) −78729.2 −4.14396
\(713\) 0 0
\(714\) −2389.66 −0.125253
\(715\) 6539.69 0.342057
\(716\) −96032.8 −5.01245
\(717\) −9435.97 −0.491482
\(718\) 47604.0 2.47432
\(719\) 18176.8 0.942812 0.471406 0.881916i \(-0.343747\pi\)
0.471406 + 0.881916i \(0.343747\pi\)
\(720\) −42906.5 −2.22087
\(721\) −1354.01 −0.0699390
\(722\) 11598.3 0.597843
\(723\) −4716.72 −0.242624
\(724\) 3124.26 0.160376
\(725\) 34689.9 1.77704
\(726\) −21400.2 −1.09399
\(727\) 3593.76 0.183336 0.0916680 0.995790i \(-0.470780\pi\)
0.0916680 + 0.995790i \(0.470780\pi\)
\(728\) 2729.00 0.138933
\(729\) 729.000 0.0370370
\(730\) 66514.5 3.37234
\(731\) 10413.7 0.526899
\(732\) −19849.6 −1.00227
\(733\) −19389.6 −0.977039 −0.488519 0.872553i \(-0.662463\pi\)
−0.488519 + 0.872553i \(0.662463\pi\)
\(734\) −14475.7 −0.727940
\(735\) 18153.5 0.911025
\(736\) 0 0
\(737\) 17782.1 0.888753
\(738\) 18581.9 0.926840
\(739\) −10088.3 −0.502171 −0.251085 0.967965i \(-0.580787\pi\)
−0.251085 + 0.967965i \(0.580787\pi\)
\(740\) 11404.2 0.566523
\(741\) −1370.51 −0.0679444
\(742\) −14825.6 −0.733511
\(743\) −4662.85 −0.230234 −0.115117 0.993352i \(-0.536724\pi\)
−0.115117 + 0.993352i \(0.536724\pi\)
\(744\) 41532.0 2.04655
\(745\) −47412.2 −2.33161
\(746\) 20260.4 0.994353
\(747\) −1022.17 −0.0500660
\(748\) 30975.5 1.51414
\(749\) 6832.26 0.333305
\(750\) 37853.9 1.84297
\(751\) −26570.0 −1.29102 −0.645508 0.763753i \(-0.723354\pi\)
−0.645508 + 0.763753i \(0.723354\pi\)
\(752\) −89923.0 −4.36058
\(753\) 20397.1 0.987136
\(754\) −5160.77 −0.249263
\(755\) 53494.0 2.57860
\(756\) −3172.82 −0.152638
\(757\) −2834.37 −0.136086 −0.0680430 0.997682i \(-0.521676\pi\)
−0.0680430 + 0.997682i \(0.521676\pi\)
\(758\) −41195.5 −1.97400
\(759\) 0 0
\(760\) −102539. −4.89407
\(761\) 15080.2 0.718339 0.359169 0.933272i \(-0.383060\pi\)
0.359169 + 0.933272i \(0.383060\pi\)
\(762\) 10793.2 0.513116
\(763\) 154.983 0.00735357
\(764\) −8262.56 −0.391268
\(765\) 4725.87 0.223352
\(766\) −60774.9 −2.86669
\(767\) 649.254 0.0305648
\(768\) 40601.5 1.90766
\(769\) −16155.8 −0.757599 −0.378799 0.925479i \(-0.623663\pi\)
−0.378799 + 0.925479i \(0.623663\pi\)
\(770\) 28759.2 1.34599
\(771\) −16910.9 −0.789924
\(772\) 38012.2 1.77214
\(773\) −22128.2 −1.02962 −0.514810 0.857304i \(-0.672138\pi\)
−0.514810 + 0.857304i \(0.672138\pi\)
\(774\) 18829.3 0.874425
\(775\) −43736.8 −2.02719
\(776\) 88116.6 4.07629
\(777\) 427.775 0.0197508
\(778\) −4172.57 −0.192280
\(779\) 25919.3 1.19211
\(780\) −8456.87 −0.388211
\(781\) 42421.9 1.94363
\(782\) 0 0
\(783\) 3829.09 0.174764
\(784\) −78051.0 −3.55553
\(785\) 11596.0 0.527232
\(786\) −1080.91 −0.0490517
\(787\) 12270.5 0.555775 0.277887 0.960614i \(-0.410366\pi\)
0.277887 + 0.960614i \(0.410366\pi\)
\(788\) −34027.0 −1.53827
\(789\) −2172.85 −0.0980425
\(790\) −73776.3 −3.32258
\(791\) −3864.26 −0.173701
\(792\) 35742.8 1.60362
\(793\) −1984.57 −0.0888704
\(794\) 46162.0 2.06326
\(795\) 29319.6 1.30800
\(796\) −78618.5 −3.50070
\(797\) −2401.69 −0.106741 −0.0533703 0.998575i \(-0.516996\pi\)
−0.0533703 + 0.998575i \(0.516996\pi\)
\(798\) −6027.00 −0.267360
\(799\) 9904.44 0.438540
\(800\) −181329. −8.01368
\(801\) 9151.50 0.403686
\(802\) 33420.0 1.47145
\(803\) −32340.7 −1.42127
\(804\) −22995.1 −1.00867
\(805\) 0 0
\(806\) 6506.66 0.284351
\(807\) −15276.7 −0.666376
\(808\) −7420.57 −0.323088
\(809\) −4011.22 −0.174323 −0.0871613 0.996194i \(-0.527780\pi\)
−0.0871613 + 0.996194i \(0.527780\pi\)
\(810\) 8545.00 0.370668
\(811\) −29258.1 −1.26682 −0.633410 0.773816i \(-0.718346\pi\)
−0.633410 + 0.773816i \(0.718346\pi\)
\(812\) −16665.3 −0.720243
\(813\) 7462.91 0.321938
\(814\) −7551.26 −0.325149
\(815\) 3973.15 0.170765
\(816\) −20318.8 −0.871693
\(817\) 26264.5 1.12470
\(818\) 56631.4 2.42063
\(819\) −317.219 −0.0135342
\(820\) 159938. 6.81132
\(821\) 43963.1 1.86885 0.934423 0.356166i \(-0.115916\pi\)
0.934423 + 0.356166i \(0.115916\pi\)
\(822\) −18371.3 −0.779527
\(823\) −28001.7 −1.18600 −0.592999 0.805203i \(-0.702056\pi\)
−0.592999 + 0.805203i \(0.702056\pi\)
\(824\) −19725.1 −0.833926
\(825\) −37640.3 −1.58844
\(826\) 2855.19 0.120272
\(827\) 1106.96 0.0465451 0.0232726 0.999729i \(-0.492591\pi\)
0.0232726 + 0.999729i \(0.492591\pi\)
\(828\) 0 0
\(829\) 24536.1 1.02795 0.513977 0.857804i \(-0.328172\pi\)
0.513977 + 0.857804i \(0.328172\pi\)
\(830\) −11981.4 −0.501062
\(831\) 8542.44 0.356599
\(832\) 13820.0 0.575867
\(833\) 8596.81 0.357577
\(834\) 11499.1 0.477436
\(835\) 64119.7 2.65743
\(836\) 78123.9 3.23202
\(837\) −4827.68 −0.199366
\(838\) −4770.24 −0.196641
\(839\) −10904.7 −0.448714 −0.224357 0.974507i \(-0.572028\pi\)
−0.224357 + 0.974507i \(0.572028\pi\)
\(840\) −23733.9 −0.974877
\(841\) −4276.62 −0.175350
\(842\) 91800.9 3.75732
\(843\) 24969.4 1.02015
\(844\) 61000.3 2.48781
\(845\) 41392.3 1.68513
\(846\) 17908.5 0.727788
\(847\) −6909.25 −0.280289
\(848\) −126059. −5.10483
\(849\) 4782.73 0.193337
\(850\) 36660.3 1.47934
\(851\) 0 0
\(852\) −54858.3 −2.20589
\(853\) 34387.1 1.38030 0.690148 0.723668i \(-0.257545\pi\)
0.690148 + 0.723668i \(0.257545\pi\)
\(854\) −8727.44 −0.349704
\(855\) 11919.2 0.476758
\(856\) 99531.4 3.97420
\(857\) −37567.6 −1.49742 −0.748708 0.662899i \(-0.769326\pi\)
−0.748708 + 0.662899i \(0.769326\pi\)
\(858\) 5599.69 0.222809
\(859\) 13616.2 0.540835 0.270417 0.962743i \(-0.412838\pi\)
0.270417 + 0.962743i \(0.412838\pi\)
\(860\) 162068. 6.42613
\(861\) 5999.32 0.237464
\(862\) −27552.5 −1.08868
\(863\) 21103.0 0.832394 0.416197 0.909275i \(-0.363363\pi\)
0.416197 + 0.909275i \(0.363363\pi\)
\(864\) −20015.2 −0.788113
\(865\) −72766.7 −2.86028
\(866\) −43263.3 −1.69763
\(867\) −12501.0 −0.489685
\(868\) 21011.5 0.821631
\(869\) 35871.5 1.40030
\(870\) 44882.8 1.74905
\(871\) −2299.05 −0.0894380
\(872\) 2257.78 0.0876811
\(873\) −10242.7 −0.397093
\(874\) 0 0
\(875\) 12221.5 0.472184
\(876\) 41821.6 1.61304
\(877\) 14346.1 0.552377 0.276188 0.961104i \(-0.410929\pi\)
0.276188 + 0.961104i \(0.410929\pi\)
\(878\) −35600.6 −1.36841
\(879\) 18518.8 0.710607
\(880\) 244534. 9.36734
\(881\) −14876.9 −0.568915 −0.284457 0.958689i \(-0.591813\pi\)
−0.284457 + 0.958689i \(0.591813\pi\)
\(882\) 15544.2 0.593424
\(883\) −5526.75 −0.210634 −0.105317 0.994439i \(-0.533586\pi\)
−0.105317 + 0.994439i \(0.533586\pi\)
\(884\) −4004.84 −0.152373
\(885\) −5646.51 −0.214470
\(886\) −84522.2 −3.20494
\(887\) 6294.73 0.238282 0.119141 0.992877i \(-0.461986\pi\)
0.119141 + 0.992877i \(0.461986\pi\)
\(888\) 6231.77 0.235501
\(889\) 3484.67 0.131465
\(890\) 107270. 4.04010
\(891\) −4154.75 −0.156217
\(892\) 96706.7 3.63002
\(893\) 24980.1 0.936090
\(894\) −40597.3 −1.51876
\(895\) 83502.6 3.11864
\(896\) 29256.1 1.09082
\(897\) 0 0
\(898\) −1694.63 −0.0629738
\(899\) −25357.5 −0.940735
\(900\) 48674.9 1.80277
\(901\) 13884.6 0.513389
\(902\) −105903. −3.90928
\(903\) 6079.21 0.224035
\(904\) −56294.1 −2.07114
\(905\) −2716.61 −0.0997826
\(906\) 45804.8 1.67965
\(907\) 47078.8 1.72351 0.861757 0.507322i \(-0.169364\pi\)
0.861757 + 0.507322i \(0.169364\pi\)
\(908\) −106930. −3.90814
\(909\) 862.568 0.0314737
\(910\) −3718.30 −0.135451
\(911\) 3032.26 0.110278 0.0551389 0.998479i \(-0.482440\pi\)
0.0551389 + 0.998479i \(0.482440\pi\)
\(912\) −51246.5 −1.86068
\(913\) 5825.61 0.211171
\(914\) −76475.5 −2.76760
\(915\) 17259.7 0.623593
\(916\) 27961.7 1.00860
\(917\) −348.980 −0.0125674
\(918\) 4046.58 0.145487
\(919\) −45892.2 −1.64727 −0.823637 0.567118i \(-0.808058\pi\)
−0.823637 + 0.567118i \(0.808058\pi\)
\(920\) 0 0
\(921\) −6173.42 −0.220870
\(922\) −66947.8 −2.39133
\(923\) −5484.76 −0.195594
\(924\) 18082.7 0.643805
\(925\) −6562.59 −0.233272
\(926\) −76929.5 −2.73009
\(927\) 2292.84 0.0812372
\(928\) −105130. −3.71882
\(929\) −25198.6 −0.889922 −0.444961 0.895550i \(-0.646783\pi\)
−0.444961 + 0.895550i \(0.646783\pi\)
\(930\) −56587.9 −1.99526
\(931\) 21682.2 0.763270
\(932\) 123258. 4.33201
\(933\) 1940.18 0.0680799
\(934\) 108606. 3.80481
\(935\) −26933.9 −0.942066
\(936\) −4621.21 −0.161377
\(937\) −18970.3 −0.661401 −0.330700 0.943736i \(-0.607285\pi\)
−0.330700 + 0.943736i \(0.607285\pi\)
\(938\) −10110.4 −0.351937
\(939\) 7458.97 0.259227
\(940\) 154143. 5.34849
\(941\) −32141.2 −1.11347 −0.556734 0.830691i \(-0.687946\pi\)
−0.556734 + 0.830691i \(0.687946\pi\)
\(942\) 9929.17 0.343429
\(943\) 0 0
\(944\) 24277.1 0.837027
\(945\) 2758.83 0.0949680
\(946\) −107313. −3.68820
\(947\) 30613.9 1.05049 0.525247 0.850950i \(-0.323973\pi\)
0.525247 + 0.850950i \(0.323973\pi\)
\(948\) −46387.6 −1.58924
\(949\) 4181.34 0.143026
\(950\) 92461.5 3.15773
\(951\) 2324.84 0.0792724
\(952\) −11239.4 −0.382639
\(953\) −28603.5 −0.972256 −0.486128 0.873888i \(-0.661591\pi\)
−0.486128 + 0.873888i \(0.661591\pi\)
\(954\) 25105.2 0.852004
\(955\) 7184.48 0.243439
\(956\) −69543.4 −2.35271
\(957\) −21822.9 −0.737131
\(958\) 49927.9 1.68382
\(959\) −5931.33 −0.199721
\(960\) −120191. −4.04079
\(961\) 2179.56 0.0731616
\(962\) 976.307 0.0327208
\(963\) −11569.5 −0.387148
\(964\) −34762.4 −1.16143
\(965\) −33052.4 −1.10259
\(966\) 0 0
\(967\) 46216.2 1.53693 0.768466 0.639891i \(-0.221021\pi\)
0.768466 + 0.639891i \(0.221021\pi\)
\(968\) −100653. −3.34206
\(969\) 5644.46 0.187127
\(970\) −120060. −3.97412
\(971\) 1400.23 0.0462775 0.0231388 0.999732i \(-0.492634\pi\)
0.0231388 + 0.999732i \(0.492634\pi\)
\(972\) 5372.75 0.177295
\(973\) 3712.59 0.122323
\(974\) −56697.5 −1.86520
\(975\) 4866.53 0.159850
\(976\) −74207.8 −2.43374
\(977\) −18565.1 −0.607933 −0.303966 0.952683i \(-0.598311\pi\)
−0.303966 + 0.952683i \(0.598311\pi\)
\(978\) 3402.06 0.111233
\(979\) −52156.6 −1.70269
\(980\) 133792. 4.36106
\(981\) −262.444 −0.00854149
\(982\) −1010.63 −0.0328417
\(983\) 37959.6 1.23166 0.615830 0.787879i \(-0.288821\pi\)
0.615830 + 0.787879i \(0.288821\pi\)
\(984\) 87397.3 2.83143
\(985\) 29587.2 0.957082
\(986\) 21254.7 0.686500
\(987\) 5781.94 0.186465
\(988\) −10100.7 −0.325249
\(989\) 0 0
\(990\) −48700.0 −1.56342
\(991\) −45809.5 −1.46840 −0.734201 0.678932i \(-0.762443\pi\)
−0.734201 + 0.678932i \(0.762443\pi\)
\(992\) 132547. 4.24232
\(993\) −25472.7 −0.814050
\(994\) −24120.0 −0.769658
\(995\) 68360.5 2.17806
\(996\) −7533.44 −0.239665
\(997\) −334.176 −0.0106153 −0.00530765 0.999986i \(-0.501689\pi\)
−0.00530765 + 0.999986i \(0.501689\pi\)
\(998\) −50294.6 −1.59524
\(999\) −724.382 −0.0229414
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.4.a.n.1.1 7
23.22 odd 2 1587.4.a.o.1.1 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1587.4.a.n.1.1 7 1.1 even 1 trivial
1587.4.a.o.1.1 yes 7 23.22 odd 2