Properties

Label 1584.4.a.y.1.1
Level $1584$
Weight $4$
Character 1584.1
Self dual yes
Analytic conductor $93.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1584,4,Mod(1,1584)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1584, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1584.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1584.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.4590254491\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{31}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 396)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.56776\) of defining polynomial
Character \(\chi\) \(=\) 1584.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-17.1355 q^{5} +23.1355 q^{7} +O(q^{10})\) \(q-17.1355 q^{5} +23.1355 q^{7} -11.0000 q^{11} -59.6776 q^{13} +80.8132 q^{17} +11.7289 q^{19} -56.0513 q^{23} +168.626 q^{25} +85.4579 q^{29} +99.8974 q^{31} -396.440 q^{35} +402.982 q^{37} -27.0842 q^{41} +74.0000 q^{43} -408.491 q^{47} +192.253 q^{49} -463.099 q^{53} +188.491 q^{55} -498.813 q^{59} -635.912 q^{61} +1022.61 q^{65} +701.421 q^{67} +27.7435 q^{71} +619.626 q^{73} -254.491 q^{77} +208.322 q^{79} -1300.98 q^{83} -1384.78 q^{85} +1391.18 q^{89} -1380.67 q^{91} -200.982 q^{95} +1051.76 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 12 q^{5} + 24 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 12 q^{5} + 24 q^{7} - 22 q^{11} - 8 q^{13} + 28 q^{17} + 68 q^{19} - 268 q^{23} + 70 q^{25} + 260 q^{29} - 112 q^{31} - 392 q^{35} + 316 q^{37} + 124 q^{41} + 148 q^{43} - 572 q^{47} - 150 q^{49} + 76 q^{53} + 132 q^{55} - 864 q^{59} - 136 q^{61} + 1288 q^{65} + 512 q^{67} - 724 q^{71} + 972 q^{73} - 264 q^{77} + 528 q^{79} - 2112 q^{83} - 1656 q^{85} + 288 q^{89} - 1336 q^{91} + 88 q^{95} + 500 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −17.1355 −1.53265 −0.766324 0.642454i \(-0.777916\pi\)
−0.766324 + 0.642454i \(0.777916\pi\)
\(6\) 0 0
\(7\) 23.1355 1.24920 0.624601 0.780944i \(-0.285262\pi\)
0.624601 + 0.780944i \(0.285262\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −59.6776 −1.27320 −0.636600 0.771194i \(-0.719660\pi\)
−0.636600 + 0.771194i \(0.719660\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 80.8132 1.15295 0.576473 0.817116i \(-0.304429\pi\)
0.576473 + 0.817116i \(0.304429\pi\)
\(18\) 0 0
\(19\) 11.7289 0.141621 0.0708106 0.997490i \(-0.477441\pi\)
0.0708106 + 0.997490i \(0.477441\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −56.0513 −0.508152 −0.254076 0.967184i \(-0.581771\pi\)
−0.254076 + 0.967184i \(0.581771\pi\)
\(24\) 0 0
\(25\) 168.626 1.34901
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 85.4579 0.547211 0.273606 0.961842i \(-0.411784\pi\)
0.273606 + 0.961842i \(0.411784\pi\)
\(30\) 0 0
\(31\) 99.8974 0.578778 0.289389 0.957212i \(-0.406548\pi\)
0.289389 + 0.957212i \(0.406548\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −396.440 −1.91459
\(36\) 0 0
\(37\) 402.982 1.79053 0.895267 0.445530i \(-0.146985\pi\)
0.895267 + 0.445530i \(0.146985\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −27.0842 −0.103167 −0.0515835 0.998669i \(-0.516427\pi\)
−0.0515835 + 0.998669i \(0.516427\pi\)
\(42\) 0 0
\(43\) 74.0000 0.262439 0.131220 0.991353i \(-0.458111\pi\)
0.131220 + 0.991353i \(0.458111\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −408.491 −1.26776 −0.633878 0.773433i \(-0.718538\pi\)
−0.633878 + 0.773433i \(0.718538\pi\)
\(48\) 0 0
\(49\) 192.253 0.560503
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −463.099 −1.20022 −0.600109 0.799919i \(-0.704876\pi\)
−0.600109 + 0.799919i \(0.704876\pi\)
\(54\) 0 0
\(55\) 188.491 0.462111
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −498.813 −1.10068 −0.550339 0.834942i \(-0.685501\pi\)
−0.550339 + 0.834942i \(0.685501\pi\)
\(60\) 0 0
\(61\) −635.912 −1.33476 −0.667379 0.744719i \(-0.732584\pi\)
−0.667379 + 0.744719i \(0.732584\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1022.61 1.95137
\(66\) 0 0
\(67\) 701.421 1.27899 0.639494 0.768796i \(-0.279144\pi\)
0.639494 + 0.768796i \(0.279144\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 27.7435 0.0463739 0.0231870 0.999731i \(-0.492619\pi\)
0.0231870 + 0.999731i \(0.492619\pi\)
\(72\) 0 0
\(73\) 619.626 0.993449 0.496725 0.867908i \(-0.334536\pi\)
0.496725 + 0.867908i \(0.334536\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −254.491 −0.376648
\(78\) 0 0
\(79\) 208.322 0.296685 0.148342 0.988936i \(-0.452606\pi\)
0.148342 + 0.988936i \(0.452606\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1300.98 −1.72050 −0.860249 0.509875i \(-0.829692\pi\)
−0.860249 + 0.509875i \(0.829692\pi\)
\(84\) 0 0
\(85\) −1384.78 −1.76706
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1391.18 1.65691 0.828453 0.560058i \(-0.189221\pi\)
0.828453 + 0.560058i \(0.189221\pi\)
\(90\) 0 0
\(91\) −1380.67 −1.59048
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −200.982 −0.217056
\(96\) 0 0
\(97\) 1051.76 1.10093 0.550463 0.834859i \(-0.314451\pi\)
0.550463 + 0.834859i \(0.314451\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 775.524 0.764035 0.382017 0.924155i \(-0.375229\pi\)
0.382017 + 0.924155i \(0.375229\pi\)
\(102\) 0 0
\(103\) −618.168 −0.591359 −0.295679 0.955287i \(-0.595546\pi\)
−0.295679 + 0.955287i \(0.595546\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2169.68 1.96029 0.980146 0.198275i \(-0.0635340\pi\)
0.980146 + 0.198275i \(0.0635340\pi\)
\(108\) 0 0
\(109\) 54.4908 0.0478832 0.0239416 0.999713i \(-0.492378\pi\)
0.0239416 + 0.999713i \(0.492378\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2090.09 −1.74000 −0.869998 0.493055i \(-0.835880\pi\)
−0.869998 + 0.493055i \(0.835880\pi\)
\(114\) 0 0
\(115\) 960.469 0.778819
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1869.66 1.44026
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −747.560 −0.534911
\(126\) 0 0
\(127\) −1801.70 −1.25886 −0.629429 0.777058i \(-0.716711\pi\)
−0.629429 + 0.777058i \(0.716711\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2987.55 −1.99254 −0.996271 0.0862774i \(-0.972503\pi\)
−0.996271 + 0.0862774i \(0.972503\pi\)
\(132\) 0 0
\(133\) 271.355 0.176913
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1848.44 −1.15272 −0.576361 0.817195i \(-0.695528\pi\)
−0.576361 + 0.817195i \(0.695528\pi\)
\(138\) 0 0
\(139\) −1857.49 −1.13345 −0.566727 0.823906i \(-0.691790\pi\)
−0.566727 + 0.823906i \(0.691790\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 656.454 0.383884
\(144\) 0 0
\(145\) −1464.37 −0.838683
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −923.905 −0.507982 −0.253991 0.967207i \(-0.581743\pi\)
−0.253991 + 0.967207i \(0.581743\pi\)
\(150\) 0 0
\(151\) 1945.88 1.04870 0.524348 0.851504i \(-0.324309\pi\)
0.524348 + 0.851504i \(0.324309\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1711.79 −0.887062
\(156\) 0 0
\(157\) −3034.42 −1.54251 −0.771253 0.636529i \(-0.780370\pi\)
−0.771253 + 0.636529i \(0.780370\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1296.78 −0.634784
\(162\) 0 0
\(163\) −116.879 −0.0561636 −0.0280818 0.999606i \(-0.508940\pi\)
−0.0280818 + 0.999606i \(0.508940\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 233.495 0.108194 0.0540969 0.998536i \(-0.482772\pi\)
0.0540969 + 0.998536i \(0.482772\pi\)
\(168\) 0 0
\(169\) 1364.42 0.621038
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2534.21 −1.11371 −0.556856 0.830609i \(-0.687992\pi\)
−0.556856 + 0.830609i \(0.687992\pi\)
\(174\) 0 0
\(175\) 3901.26 1.68519
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2051.62 −0.856677 −0.428339 0.903618i \(-0.640901\pi\)
−0.428339 + 0.903618i \(0.640901\pi\)
\(180\) 0 0
\(181\) −1648.58 −0.677005 −0.338502 0.940965i \(-0.609920\pi\)
−0.338502 + 0.940965i \(0.609920\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6905.30 −2.74426
\(186\) 0 0
\(187\) −888.945 −0.347626
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −878.117 −0.332661 −0.166331 0.986070i \(-0.553192\pi\)
−0.166331 + 0.986070i \(0.553192\pi\)
\(192\) 0 0
\(193\) −1877.90 −0.700383 −0.350192 0.936678i \(-0.613884\pi\)
−0.350192 + 0.936678i \(0.613884\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3244.61 −1.17345 −0.586723 0.809788i \(-0.699582\pi\)
−0.586723 + 0.809788i \(0.699582\pi\)
\(198\) 0 0
\(199\) −3887.56 −1.38483 −0.692417 0.721498i \(-0.743454\pi\)
−0.692417 + 0.721498i \(0.743454\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1977.11 0.683577
\(204\) 0 0
\(205\) 464.103 0.158119
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −129.018 −0.0427004
\(210\) 0 0
\(211\) −4567.95 −1.49038 −0.745191 0.666851i \(-0.767642\pi\)
−0.745191 + 0.666851i \(0.767642\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1268.03 −0.402227
\(216\) 0 0
\(217\) 2311.18 0.723010
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4822.74 −1.46793
\(222\) 0 0
\(223\) −3885.48 −1.16678 −0.583388 0.812194i \(-0.698273\pi\)
−0.583388 + 0.812194i \(0.698273\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 985.011 0.288006 0.144003 0.989577i \(-0.454002\pi\)
0.144003 + 0.989577i \(0.454002\pi\)
\(228\) 0 0
\(229\) −795.861 −0.229659 −0.114830 0.993385i \(-0.536632\pi\)
−0.114830 + 0.993385i \(0.536632\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3453.50 0.971014 0.485507 0.874233i \(-0.338635\pi\)
0.485507 + 0.874233i \(0.338635\pi\)
\(234\) 0 0
\(235\) 6999.71 1.94302
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1235.52 0.334389 0.167194 0.985924i \(-0.446529\pi\)
0.167194 + 0.985924i \(0.446529\pi\)
\(240\) 0 0
\(241\) 5914.20 1.58078 0.790389 0.612606i \(-0.209879\pi\)
0.790389 + 0.612606i \(0.209879\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3294.35 −0.859055
\(246\) 0 0
\(247\) −699.956 −0.180312
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7353.71 −1.84925 −0.924626 0.380876i \(-0.875622\pi\)
−0.924626 + 0.380876i \(0.875622\pi\)
\(252\) 0 0
\(253\) 616.564 0.153214
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1838.71 −0.446286 −0.223143 0.974786i \(-0.571632\pi\)
−0.223143 + 0.974786i \(0.571632\pi\)
\(258\) 0 0
\(259\) 9323.19 2.23674
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2923.71 −0.685489 −0.342744 0.939429i \(-0.611356\pi\)
−0.342744 + 0.939429i \(0.611356\pi\)
\(264\) 0 0
\(265\) 7935.44 1.83951
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 209.517 0.0474887 0.0237444 0.999718i \(-0.492441\pi\)
0.0237444 + 0.999718i \(0.492441\pi\)
\(270\) 0 0
\(271\) 1239.79 0.277905 0.138952 0.990299i \(-0.455627\pi\)
0.138952 + 0.990299i \(0.455627\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1854.89 −0.406742
\(276\) 0 0
\(277\) −1947.43 −0.422417 −0.211209 0.977441i \(-0.567740\pi\)
−0.211209 + 0.977441i \(0.567740\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2202.79 0.467642 0.233821 0.972280i \(-0.424877\pi\)
0.233821 + 0.972280i \(0.424877\pi\)
\(282\) 0 0
\(283\) −3251.80 −0.683037 −0.341519 0.939875i \(-0.610941\pi\)
−0.341519 + 0.939875i \(0.610941\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −626.608 −0.128876
\(288\) 0 0
\(289\) 1617.77 0.329283
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4009.12 0.799370 0.399685 0.916653i \(-0.369120\pi\)
0.399685 + 0.916653i \(0.369120\pi\)
\(294\) 0 0
\(295\) 8547.43 1.68695
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3345.01 0.646980
\(300\) 0 0
\(301\) 1712.03 0.327840
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10896.7 2.04571
\(306\) 0 0
\(307\) 10113.3 1.88012 0.940062 0.341004i \(-0.110767\pi\)
0.940062 + 0.341004i \(0.110767\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7289.25 −1.32905 −0.664527 0.747265i \(-0.731367\pi\)
−0.664527 + 0.747265i \(0.731367\pi\)
\(312\) 0 0
\(313\) −6692.49 −1.20857 −0.604284 0.796769i \(-0.706541\pi\)
−0.604284 + 0.796769i \(0.706541\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5903.35 1.04595 0.522973 0.852349i \(-0.324823\pi\)
0.522973 + 0.852349i \(0.324823\pi\)
\(318\) 0 0
\(319\) −940.037 −0.164990
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 947.853 0.163282
\(324\) 0 0
\(325\) −10063.2 −1.71756
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9450.65 −1.58368
\(330\) 0 0
\(331\) −10051.4 −1.66911 −0.834553 0.550928i \(-0.814274\pi\)
−0.834553 + 0.550928i \(0.814274\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −12019.2 −1.96024
\(336\) 0 0
\(337\) 7157.33 1.15693 0.578464 0.815708i \(-0.303653\pi\)
0.578464 + 0.815708i \(0.303653\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1098.87 −0.174508
\(342\) 0 0
\(343\) −3487.62 −0.549020
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7625.44 1.17970 0.589848 0.807514i \(-0.299187\pi\)
0.589848 + 0.807514i \(0.299187\pi\)
\(348\) 0 0
\(349\) 6075.13 0.931789 0.465895 0.884840i \(-0.345733\pi\)
0.465895 + 0.884840i \(0.345733\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3776.97 0.569484 0.284742 0.958604i \(-0.408092\pi\)
0.284742 + 0.958604i \(0.408092\pi\)
\(354\) 0 0
\(355\) −475.400 −0.0710749
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2975.31 0.437412 0.218706 0.975791i \(-0.429816\pi\)
0.218706 + 0.975791i \(0.429816\pi\)
\(360\) 0 0
\(361\) −6721.43 −0.979943
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10617.6 −1.52261
\(366\) 0 0
\(367\) −4485.19 −0.637942 −0.318971 0.947764i \(-0.603337\pi\)
−0.318971 + 0.947764i \(0.603337\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10714.0 −1.49931
\(372\) 0 0
\(373\) −4989.98 −0.692684 −0.346342 0.938108i \(-0.612576\pi\)
−0.346342 + 0.938108i \(0.612576\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5099.93 −0.696710
\(378\) 0 0
\(379\) −6105.92 −0.827546 −0.413773 0.910380i \(-0.635789\pi\)
−0.413773 + 0.910380i \(0.635789\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13409.8 −1.78906 −0.894531 0.447006i \(-0.852490\pi\)
−0.894531 + 0.447006i \(0.852490\pi\)
\(384\) 0 0
\(385\) 4360.83 0.577269
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14748.7 1.92233 0.961166 0.275971i \(-0.0889995\pi\)
0.961166 + 0.275971i \(0.0889995\pi\)
\(390\) 0 0
\(391\) −4529.68 −0.585872
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3569.71 −0.454713
\(396\) 0 0
\(397\) 11148.0 1.40932 0.704660 0.709545i \(-0.251099\pi\)
0.704660 + 0.709545i \(0.251099\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8105.61 1.00941 0.504707 0.863291i \(-0.331601\pi\)
0.504707 + 0.863291i \(0.331601\pi\)
\(402\) 0 0
\(403\) −5961.64 −0.736900
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4432.80 −0.539866
\(408\) 0 0
\(409\) −3940.27 −0.476366 −0.238183 0.971220i \(-0.576552\pi\)
−0.238183 + 0.971220i \(0.576552\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −11540.3 −1.37497
\(414\) 0 0
\(415\) 22293.0 2.63692
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3979.21 0.463955 0.231977 0.972721i \(-0.425480\pi\)
0.231977 + 0.972721i \(0.425480\pi\)
\(420\) 0 0
\(421\) 4480.43 0.518677 0.259338 0.965787i \(-0.416495\pi\)
0.259338 + 0.965787i \(0.416495\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13627.2 1.55534
\(426\) 0 0
\(427\) −14712.2 −1.66738
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 269.524 0.0301218 0.0150609 0.999887i \(-0.495206\pi\)
0.0150609 + 0.999887i \(0.495206\pi\)
\(432\) 0 0
\(433\) 4813.88 0.534274 0.267137 0.963659i \(-0.413922\pi\)
0.267137 + 0.963659i \(0.413922\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −657.422 −0.0719652
\(438\) 0 0
\(439\) 1642.33 0.178552 0.0892758 0.996007i \(-0.471545\pi\)
0.0892758 + 0.996007i \(0.471545\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11791.1 −1.26458 −0.632291 0.774731i \(-0.717885\pi\)
−0.632291 + 0.774731i \(0.717885\pi\)
\(444\) 0 0
\(445\) −23838.6 −2.53946
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16120.5 1.69437 0.847184 0.531300i \(-0.178296\pi\)
0.847184 + 0.531300i \(0.178296\pi\)
\(450\) 0 0
\(451\) 297.927 0.0311060
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 23658.6 2.43765
\(456\) 0 0
\(457\) −16023.9 −1.64019 −0.820096 0.572226i \(-0.806080\pi\)
−0.820096 + 0.572226i \(0.806080\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18815.8 −1.90095 −0.950476 0.310799i \(-0.899403\pi\)
−0.950476 + 0.310799i \(0.899403\pi\)
\(462\) 0 0
\(463\) −10838.9 −1.08796 −0.543982 0.839097i \(-0.683084\pi\)
−0.543982 + 0.839097i \(0.683084\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12978.1 1.28599 0.642993 0.765872i \(-0.277692\pi\)
0.642993 + 0.765872i \(0.277692\pi\)
\(468\) 0 0
\(469\) 16227.7 1.59771
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −814.000 −0.0791285
\(474\) 0 0
\(475\) 1977.81 0.191049
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13221.3 −1.26117 −0.630583 0.776122i \(-0.717184\pi\)
−0.630583 + 0.776122i \(0.717184\pi\)
\(480\) 0 0
\(481\) −24049.0 −2.27971
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −18022.4 −1.68733
\(486\) 0 0
\(487\) −10876.2 −1.01200 −0.506002 0.862532i \(-0.668877\pi\)
−0.506002 + 0.862532i \(0.668877\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16259.9 1.49449 0.747247 0.664546i \(-0.231375\pi\)
0.747247 + 0.664546i \(0.231375\pi\)
\(492\) 0 0
\(493\) 6906.12 0.630905
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 641.861 0.0579304
\(498\) 0 0
\(499\) 15871.4 1.42385 0.711927 0.702253i \(-0.247823\pi\)
0.711927 + 0.702253i \(0.247823\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2755.87 0.244290 0.122145 0.992512i \(-0.461023\pi\)
0.122145 + 0.992512i \(0.461023\pi\)
\(504\) 0 0
\(505\) −13289.0 −1.17100
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17150.8 −1.49351 −0.746756 0.665098i \(-0.768390\pi\)
−0.746756 + 0.665098i \(0.768390\pi\)
\(510\) 0 0
\(511\) 14335.4 1.24102
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10592.6 0.906345
\(516\) 0 0
\(517\) 4493.40 0.382243
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3971.87 0.333994 0.166997 0.985957i \(-0.446593\pi\)
0.166997 + 0.985957i \(0.446593\pi\)
\(522\) 0 0
\(523\) 10449.8 0.873688 0.436844 0.899537i \(-0.356096\pi\)
0.436844 + 0.899537i \(0.356096\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8073.03 0.667299
\(528\) 0 0
\(529\) −9025.25 −0.741781
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1616.32 0.131352
\(534\) 0 0
\(535\) −37178.7 −3.00444
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2114.78 −0.168998
\(540\) 0 0
\(541\) 10902.6 0.866430 0.433215 0.901291i \(-0.357379\pi\)
0.433215 + 0.901291i \(0.357379\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −933.729 −0.0733882
\(546\) 0 0
\(547\) 4206.15 0.328779 0.164389 0.986396i \(-0.447435\pi\)
0.164389 + 0.986396i \(0.447435\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1002.33 0.0774968
\(552\) 0 0
\(553\) 4819.65 0.370619
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4765.22 0.362494 0.181247 0.983438i \(-0.441987\pi\)
0.181247 + 0.983438i \(0.441987\pi\)
\(558\) 0 0
\(559\) −4416.15 −0.334138
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8664.98 0.648642 0.324321 0.945947i \(-0.394864\pi\)
0.324321 + 0.945947i \(0.394864\pi\)
\(564\) 0 0
\(565\) 35814.9 2.66680
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11067.6 0.815429 0.407714 0.913109i \(-0.366326\pi\)
0.407714 + 0.913109i \(0.366326\pi\)
\(570\) 0 0
\(571\) 15956.5 1.16946 0.584729 0.811229i \(-0.301201\pi\)
0.584729 + 0.811229i \(0.301201\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9451.73 −0.685503
\(576\) 0 0
\(577\) 1299.52 0.0937605 0.0468803 0.998901i \(-0.485072\pi\)
0.0468803 + 0.998901i \(0.485072\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −30098.9 −2.14925
\(582\) 0 0
\(583\) 5094.09 0.361879
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6714.43 −0.472120 −0.236060 0.971739i \(-0.575856\pi\)
−0.236060 + 0.971739i \(0.575856\pi\)
\(588\) 0 0
\(589\) 1171.69 0.0819672
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10130.3 0.701522 0.350761 0.936465i \(-0.385923\pi\)
0.350761 + 0.936465i \(0.385923\pi\)
\(594\) 0 0
\(595\) −32037.5 −2.20741
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7732.64 0.527457 0.263729 0.964597i \(-0.415048\pi\)
0.263729 + 0.964597i \(0.415048\pi\)
\(600\) 0 0
\(601\) 13318.2 0.903925 0.451963 0.892037i \(-0.350724\pi\)
0.451963 + 0.892037i \(0.350724\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2073.40 −0.139332
\(606\) 0 0
\(607\) 18128.9 1.21224 0.606120 0.795373i \(-0.292725\pi\)
0.606120 + 0.795373i \(0.292725\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24377.8 1.61411
\(612\) 0 0
\(613\) −15524.8 −1.02291 −0.511454 0.859311i \(-0.670893\pi\)
−0.511454 + 0.859311i \(0.670893\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3365.91 −0.219621 −0.109811 0.993953i \(-0.535024\pi\)
−0.109811 + 0.993953i \(0.535024\pi\)
\(618\) 0 0
\(619\) −13998.9 −0.908990 −0.454495 0.890749i \(-0.650180\pi\)
−0.454495 + 0.890749i \(0.650180\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 32185.7 2.06981
\(624\) 0 0
\(625\) −8268.45 −0.529181
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 32566.2 2.06439
\(630\) 0 0
\(631\) −13632.3 −0.860052 −0.430026 0.902816i \(-0.641496\pi\)
−0.430026 + 0.902816i \(0.641496\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 30873.1 1.92939
\(636\) 0 0
\(637\) −11473.2 −0.713633
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2510.82 0.154713 0.0773567 0.997003i \(-0.475352\pi\)
0.0773567 + 0.997003i \(0.475352\pi\)
\(642\) 0 0
\(643\) 11707.5 0.718037 0.359018 0.933330i \(-0.383112\pi\)
0.359018 + 0.933330i \(0.383112\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7293.14 0.443157 0.221579 0.975142i \(-0.428879\pi\)
0.221579 + 0.975142i \(0.428879\pi\)
\(648\) 0 0
\(649\) 5486.94 0.331867
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3663.23 −0.219530 −0.109765 0.993958i \(-0.535010\pi\)
−0.109765 + 0.993958i \(0.535010\pi\)
\(654\) 0 0
\(655\) 51193.2 3.05387
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18384.4 −1.08673 −0.543365 0.839496i \(-0.682850\pi\)
−0.543365 + 0.839496i \(0.682850\pi\)
\(660\) 0 0
\(661\) 18470.0 1.08684 0.543420 0.839461i \(-0.317129\pi\)
0.543420 + 0.839461i \(0.317129\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4649.82 −0.271146
\(666\) 0 0
\(667\) −4790.03 −0.278067
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6995.03 0.402444
\(672\) 0 0
\(673\) −6242.62 −0.357556 −0.178778 0.983889i \(-0.557214\pi\)
−0.178778 + 0.983889i \(0.557214\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26567.6 1.50823 0.754117 0.656740i \(-0.228065\pi\)
0.754117 + 0.656740i \(0.228065\pi\)
\(678\) 0 0
\(679\) 24333.0 1.37528
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21274.9 −1.19189 −0.595946 0.803025i \(-0.703223\pi\)
−0.595946 + 0.803025i \(0.703223\pi\)
\(684\) 0 0
\(685\) 31674.0 1.76672
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 27636.6 1.52812
\(690\) 0 0
\(691\) 28567.4 1.57273 0.786363 0.617765i \(-0.211962\pi\)
0.786363 + 0.617765i \(0.211962\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 31829.0 1.73719
\(696\) 0 0
\(697\) −2188.76 −0.118946
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12457.4 −0.671199 −0.335600 0.942005i \(-0.608939\pi\)
−0.335600 + 0.942005i \(0.608939\pi\)
\(702\) 0 0
\(703\) 4726.55 0.253578
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17942.2 0.954433
\(708\) 0 0
\(709\) 3973.22 0.210462 0.105231 0.994448i \(-0.466442\pi\)
0.105231 + 0.994448i \(0.466442\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5599.38 −0.294107
\(714\) 0 0
\(715\) −11248.7 −0.588360
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21019.6 1.09026 0.545131 0.838351i \(-0.316480\pi\)
0.545131 + 0.838351i \(0.316480\pi\)
\(720\) 0 0
\(721\) −14301.7 −0.738726
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14410.5 0.738194
\(726\) 0 0
\(727\) −20360.3 −1.03868 −0.519342 0.854567i \(-0.673823\pi\)
−0.519342 + 0.854567i \(0.673823\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5980.17 0.302578
\(732\) 0 0
\(733\) −19038.5 −0.959350 −0.479675 0.877446i \(-0.659245\pi\)
−0.479675 + 0.877446i \(0.659245\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7715.63 −0.385630
\(738\) 0 0
\(739\) 1317.95 0.0656045 0.0328023 0.999462i \(-0.489557\pi\)
0.0328023 + 0.999462i \(0.489557\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16501.6 −0.814784 −0.407392 0.913253i \(-0.633562\pi\)
−0.407392 + 0.913253i \(0.633562\pi\)
\(744\) 0 0
\(745\) 15831.6 0.778557
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 50196.8 2.44880
\(750\) 0 0
\(751\) −7514.31 −0.365115 −0.182557 0.983195i \(-0.558438\pi\)
−0.182557 + 0.983195i \(0.558438\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −33343.6 −1.60728
\(756\) 0 0
\(757\) −18274.4 −0.877402 −0.438701 0.898633i \(-0.644561\pi\)
−0.438701 + 0.898633i \(0.644561\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30769.7 1.46570 0.732852 0.680388i \(-0.238189\pi\)
0.732852 + 0.680388i \(0.238189\pi\)
\(762\) 0 0
\(763\) 1260.67 0.0598158
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 29768.0 1.40138
\(768\) 0 0
\(769\) −9841.74 −0.461511 −0.230756 0.973012i \(-0.574120\pi\)
−0.230756 + 0.973012i \(0.574120\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10693.8 −0.497581 −0.248791 0.968557i \(-0.580033\pi\)
−0.248791 + 0.968557i \(0.580033\pi\)
\(774\) 0 0
\(775\) 16845.3 0.780777
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −317.669 −0.0146106
\(780\) 0 0
\(781\) −305.179 −0.0139823
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 51996.5 2.36412
\(786\) 0 0
\(787\) 24419.1 1.10603 0.553015 0.833171i \(-0.313477\pi\)
0.553015 + 0.833171i \(0.313477\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −48355.5 −2.17361
\(792\) 0 0
\(793\) 37949.7 1.69941
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14848.3 −0.659919 −0.329959 0.943995i \(-0.607035\pi\)
−0.329959 + 0.943995i \(0.607035\pi\)
\(798\) 0 0
\(799\) −33011.4 −1.46165
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6815.89 −0.299536
\(804\) 0 0
\(805\) 22220.9 0.972901
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20269.0 0.880864 0.440432 0.897786i \(-0.354825\pi\)
0.440432 + 0.897786i \(0.354825\pi\)
\(810\) 0 0
\(811\) −31691.6 −1.37219 −0.686094 0.727513i \(-0.740676\pi\)
−0.686094 + 0.727513i \(0.740676\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2002.78 0.0860791
\(816\) 0 0
\(817\) 867.942 0.0371670
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16106.6 −0.684680 −0.342340 0.939576i \(-0.611220\pi\)
−0.342340 + 0.939576i \(0.611220\pi\)
\(822\) 0 0
\(823\) −43327.1 −1.83510 −0.917550 0.397620i \(-0.869836\pi\)
−0.917550 + 0.397620i \(0.869836\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −22443.8 −0.943711 −0.471855 0.881676i \(-0.656416\pi\)
−0.471855 + 0.881676i \(0.656416\pi\)
\(828\) 0 0
\(829\) −23235.7 −0.973474 −0.486737 0.873549i \(-0.661813\pi\)
−0.486737 + 0.873549i \(0.661813\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 15536.5 0.646230
\(834\) 0 0
\(835\) −4001.05 −0.165823
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6100.81 −0.251041 −0.125521 0.992091i \(-0.540060\pi\)
−0.125521 + 0.992091i \(0.540060\pi\)
\(840\) 0 0
\(841\) −17085.9 −0.700560
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −23380.1 −0.951833
\(846\) 0 0
\(847\) 2799.40 0.113564
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −22587.6 −0.909864
\(852\) 0 0
\(853\) −24426.3 −0.980471 −0.490235 0.871590i \(-0.663089\pi\)
−0.490235 + 0.871590i \(0.663089\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8143.04 0.324575 0.162288 0.986743i \(-0.448113\pi\)
0.162288 + 0.986743i \(0.448113\pi\)
\(858\) 0 0
\(859\) −24479.5 −0.972329 −0.486164 0.873867i \(-0.661604\pi\)
−0.486164 + 0.873867i \(0.661604\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24905.7 −0.982387 −0.491194 0.871050i \(-0.663439\pi\)
−0.491194 + 0.871050i \(0.663439\pi\)
\(864\) 0 0
\(865\) 43424.9 1.70693
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2291.55 −0.0894538
\(870\) 0 0
\(871\) −41859.2 −1.62841
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −17295.2 −0.668211
\(876\) 0 0
\(877\) −9738.75 −0.374976 −0.187488 0.982267i \(-0.560035\pi\)
−0.187488 + 0.982267i \(0.560035\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8663.22 0.331296 0.165648 0.986185i \(-0.447029\pi\)
0.165648 + 0.986185i \(0.447029\pi\)
\(882\) 0 0
\(883\) 34151.4 1.30157 0.650785 0.759262i \(-0.274440\pi\)
0.650785 + 0.759262i \(0.274440\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32057.4 1.21351 0.606754 0.794890i \(-0.292471\pi\)
0.606754 + 0.794890i \(0.292471\pi\)
\(888\) 0 0
\(889\) −41683.3 −1.57257
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4791.17 −0.179541
\(894\) 0 0
\(895\) 35155.6 1.31298
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8537.02 0.316714
\(900\) 0 0
\(901\) −37424.5 −1.38378
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 28249.3 1.03761
\(906\) 0 0
\(907\) 8298.83 0.303813 0.151906 0.988395i \(-0.451459\pi\)
0.151906 + 0.988395i \(0.451459\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 32365.3 1.17707 0.588535 0.808472i \(-0.299705\pi\)
0.588535 + 0.808472i \(0.299705\pi\)
\(912\) 0 0
\(913\) 14310.8 0.518749
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −69118.4 −2.48909
\(918\) 0 0
\(919\) 15578.2 0.559170 0.279585 0.960121i \(-0.409803\pi\)
0.279585 + 0.960121i \(0.409803\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1655.67 −0.0590433
\(924\) 0 0
\(925\) 67953.3 2.41545
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28956.6 1.02264 0.511321 0.859390i \(-0.329156\pi\)
0.511321 + 0.859390i \(0.329156\pi\)
\(930\) 0 0
\(931\) 2254.92 0.0793792
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15232.5 0.532789
\(936\) 0 0
\(937\) −33515.3 −1.16851 −0.584256 0.811569i \(-0.698614\pi\)
−0.584256 + 0.811569i \(0.698614\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −32394.3 −1.12224 −0.561119 0.827735i \(-0.689629\pi\)
−0.561119 + 0.827735i \(0.689629\pi\)
\(942\) 0 0
\(943\) 1518.11 0.0524245
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 10750.3 0.368889 0.184445 0.982843i \(-0.440951\pi\)
0.184445 + 0.982843i \(0.440951\pi\)
\(948\) 0 0
\(949\) −36977.8 −1.26486
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22205.9 0.754794 0.377397 0.926052i \(-0.376819\pi\)
0.377397 + 0.926052i \(0.376819\pi\)
\(954\) 0 0
\(955\) 15047.0 0.509853
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −42764.6 −1.43998
\(960\) 0 0
\(961\) −19811.5 −0.665017
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 32178.8 1.07344
\(966\) 0 0
\(967\) −14348.5 −0.477161 −0.238581 0.971123i \(-0.576682\pi\)
−0.238581 + 0.971123i \(0.576682\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −41006.2 −1.35525 −0.677627 0.735406i \(-0.736992\pi\)
−0.677627 + 0.735406i \(0.736992\pi\)
\(972\) 0 0
\(973\) −42973.9 −1.41591
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17160.2 0.561928 0.280964 0.959718i \(-0.409346\pi\)
0.280964 + 0.959718i \(0.409346\pi\)
\(978\) 0 0
\(979\) −15303.0 −0.499576
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −43576.2 −1.41390 −0.706950 0.707264i \(-0.749929\pi\)
−0.706950 + 0.707264i \(0.749929\pi\)
\(984\) 0 0
\(985\) 55598.1 1.79848
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4147.80 −0.133359
\(990\) 0 0
\(991\) 38954.3 1.24866 0.624332 0.781159i \(-0.285371\pi\)
0.624332 + 0.781159i \(0.285371\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 66615.4 2.12246
\(996\) 0 0
\(997\) −38907.9 −1.23593 −0.617967 0.786204i \(-0.712043\pi\)
−0.617967 + 0.786204i \(0.712043\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.4.a.y.1.1 2
3.2 odd 2 1584.4.a.bi.1.2 2
4.3 odd 2 396.4.a.h.1.1 2
12.11 even 2 396.4.a.j.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.4.a.h.1.1 2 4.3 odd 2
396.4.a.j.1.2 yes 2 12.11 even 2
1584.4.a.y.1.1 2 1.1 even 1 trivial
1584.4.a.bi.1.2 2 3.2 odd 2