Properties

Label 1584.4.a.bc.1.1
Level $1584$
Weight $4$
Character 1584.1
Self dual yes
Analytic conductor $93.459$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1584,4,Mod(1,1584)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1584, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1584.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1584.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.4590254491\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1584.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.8564 q^{5} -3.07180 q^{7} +O(q^{10})\) \(q-14.8564 q^{5} -3.07180 q^{7} -11.0000 q^{11} +5.35898 q^{13} +41.2154 q^{17} -139.923 q^{19} -111.354 q^{23} +95.7128 q^{25} +24.9948 q^{29} -31.4974 q^{31} +45.6359 q^{35} +13.1436 q^{37} -261.072 q^{41} +57.7128 q^{43} -343.846 q^{47} -333.564 q^{49} +342.995 q^{53} +163.420 q^{55} +88.3693 q^{59} +738.697 q^{61} -79.6152 q^{65} -342.359 q^{67} -207.364 q^{71} -1010.60 q^{73} +33.7898 q^{77} -1294.23 q^{79} +441.846 q^{83} -612.313 q^{85} +1489.11 q^{89} -16.4617 q^{91} +2078.75 q^{95} +1346.42 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 20 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{5} - 20 q^{7} - 22 q^{11} + 80 q^{13} + 124 q^{17} - 72 q^{19} - 98 q^{23} + 136 q^{25} - 144 q^{29} + 34 q^{31} - 172 q^{35} + 54 q^{37} - 536 q^{41} + 60 q^{43} - 272 q^{47} - 390 q^{49} + 492 q^{53} + 22 q^{55} + 634 q^{59} + 840 q^{61} + 880 q^{65} - 754 q^{67} - 678 q^{71} - 400 q^{73} + 220 q^{77} - 316 q^{79} + 468 q^{83} + 452 q^{85} + 1842 q^{89} - 1280 q^{91} + 2952 q^{95} + 2194 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −14.8564 −1.32880 −0.664399 0.747378i \(-0.731312\pi\)
−0.664399 + 0.747378i \(0.731312\pi\)
\(6\) 0 0
\(7\) −3.07180 −0.165861 −0.0829307 0.996555i \(-0.526428\pi\)
−0.0829307 + 0.996555i \(0.526428\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 5.35898 0.114332 0.0571659 0.998365i \(-0.481794\pi\)
0.0571659 + 0.998365i \(0.481794\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 41.2154 0.588012 0.294006 0.955804i \(-0.405011\pi\)
0.294006 + 0.955804i \(0.405011\pi\)
\(18\) 0 0
\(19\) −139.923 −1.68950 −0.844751 0.535159i \(-0.820252\pi\)
−0.844751 + 0.535159i \(0.820252\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −111.354 −1.00952 −0.504758 0.863261i \(-0.668418\pi\)
−0.504758 + 0.863261i \(0.668418\pi\)
\(24\) 0 0
\(25\) 95.7128 0.765703
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 24.9948 0.160049 0.0800246 0.996793i \(-0.474500\pi\)
0.0800246 + 0.996793i \(0.474500\pi\)
\(30\) 0 0
\(31\) −31.4974 −0.182487 −0.0912436 0.995829i \(-0.529084\pi\)
−0.0912436 + 0.995829i \(0.529084\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 45.6359 0.220396
\(36\) 0 0
\(37\) 13.1436 0.0583998 0.0291999 0.999574i \(-0.490704\pi\)
0.0291999 + 0.999574i \(0.490704\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −261.072 −0.994453 −0.497226 0.867621i \(-0.665648\pi\)
−0.497226 + 0.867621i \(0.665648\pi\)
\(42\) 0 0
\(43\) 57.7128 0.204677 0.102339 0.994750i \(-0.467367\pi\)
0.102339 + 0.994750i \(0.467367\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −343.846 −1.06713 −0.533565 0.845759i \(-0.679148\pi\)
−0.533565 + 0.845759i \(0.679148\pi\)
\(48\) 0 0
\(49\) −333.564 −0.972490
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 342.995 0.888943 0.444471 0.895793i \(-0.353392\pi\)
0.444471 + 0.895793i \(0.353392\pi\)
\(54\) 0 0
\(55\) 163.420 0.400647
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 88.3693 0.194995 0.0974975 0.995236i \(-0.468916\pi\)
0.0974975 + 0.995236i \(0.468916\pi\)
\(60\) 0 0
\(61\) 738.697 1.55050 0.775250 0.631654i \(-0.217624\pi\)
0.775250 + 0.631654i \(0.217624\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −79.6152 −0.151924
\(66\) 0 0
\(67\) −342.359 −0.624266 −0.312133 0.950038i \(-0.601043\pi\)
−0.312133 + 0.950038i \(0.601043\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −207.364 −0.346614 −0.173307 0.984868i \(-0.555445\pi\)
−0.173307 + 0.984868i \(0.555445\pi\)
\(72\) 0 0
\(73\) −1010.60 −1.62030 −0.810149 0.586224i \(-0.800614\pi\)
−0.810149 + 0.586224i \(0.800614\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 33.7898 0.0500091
\(78\) 0 0
\(79\) −1294.23 −1.84319 −0.921593 0.388157i \(-0.873112\pi\)
−0.921593 + 0.388157i \(0.873112\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 441.846 0.584324 0.292162 0.956369i \(-0.405625\pi\)
0.292162 + 0.956369i \(0.405625\pi\)
\(84\) 0 0
\(85\) −612.313 −0.781349
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1489.11 1.77355 0.886773 0.462205i \(-0.152942\pi\)
0.886773 + 0.462205i \(0.152942\pi\)
\(90\) 0 0
\(91\) −16.4617 −0.0189633
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2078.75 2.24501
\(96\) 0 0
\(97\) 1346.42 1.40936 0.704679 0.709526i \(-0.251091\pi\)
0.704679 + 0.709526i \(0.251091\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 161.461 0.159069 0.0795347 0.996832i \(-0.474657\pi\)
0.0795347 + 0.996832i \(0.474657\pi\)
\(102\) 0 0
\(103\) 34.7592 0.0332517 0.0166259 0.999862i \(-0.494708\pi\)
0.0166259 + 0.999862i \(0.494708\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 832.179 0.751867 0.375934 0.926647i \(-0.377322\pi\)
0.375934 + 0.926647i \(0.377322\pi\)
\(108\) 0 0
\(109\) 1044.26 0.917629 0.458815 0.888532i \(-0.348274\pi\)
0.458815 + 0.888532i \(0.348274\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −295.082 −0.245654 −0.122827 0.992428i \(-0.539196\pi\)
−0.122827 + 0.992428i \(0.539196\pi\)
\(114\) 0 0
\(115\) 1654.32 1.34144
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −126.605 −0.0975285
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 435.102 0.311334
\(126\) 0 0
\(127\) 1317.60 0.920618 0.460309 0.887759i \(-0.347739\pi\)
0.460309 + 0.887759i \(0.347739\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1600.71 −1.06759 −0.533797 0.845612i \(-0.679235\pi\)
−0.533797 + 0.845612i \(0.679235\pi\)
\(132\) 0 0
\(133\) 429.815 0.280223
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1611.68 −1.00507 −0.502536 0.864556i \(-0.667600\pi\)
−0.502536 + 0.864556i \(0.667600\pi\)
\(138\) 0 0
\(139\) 31.8619 0.0194424 0.00972120 0.999953i \(-0.496906\pi\)
0.00972120 + 0.999953i \(0.496906\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −58.9488 −0.0344724
\(144\) 0 0
\(145\) −371.334 −0.212673
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2428.34 1.33515 0.667576 0.744542i \(-0.267332\pi\)
0.667576 + 0.744542i \(0.267332\pi\)
\(150\) 0 0
\(151\) 2576.68 1.38866 0.694328 0.719659i \(-0.255702\pi\)
0.694328 + 0.719659i \(0.255702\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 467.939 0.242489
\(156\) 0 0
\(157\) 2475.94 1.25861 0.629305 0.777158i \(-0.283340\pi\)
0.629305 + 0.777158i \(0.283340\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 342.056 0.167440
\(162\) 0 0
\(163\) 2725.11 1.30949 0.654745 0.755850i \(-0.272776\pi\)
0.654745 + 0.755850i \(0.272776\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2737.30 1.26837 0.634187 0.773180i \(-0.281335\pi\)
0.634187 + 0.773180i \(0.281335\pi\)
\(168\) 0 0
\(169\) −2168.28 −0.986928
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2307.42 −1.01404 −0.507022 0.861933i \(-0.669254\pi\)
−0.507022 + 0.861933i \(0.669254\pi\)
\(174\) 0 0
\(175\) −294.010 −0.127001
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1312.15 −0.547905 −0.273953 0.961743i \(-0.588331\pi\)
−0.273953 + 0.961743i \(0.588331\pi\)
\(180\) 0 0
\(181\) −803.174 −0.329831 −0.164916 0.986308i \(-0.552735\pi\)
−0.164916 + 0.986308i \(0.552735\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −195.267 −0.0776015
\(186\) 0 0
\(187\) −453.369 −0.177292
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1718.25 0.650932 0.325466 0.945554i \(-0.394479\pi\)
0.325466 + 0.945554i \(0.394479\pi\)
\(192\) 0 0
\(193\) 1340.18 0.499837 0.249919 0.968267i \(-0.419596\pi\)
0.249919 + 0.968267i \(0.419596\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3518.33 1.27244 0.636220 0.771508i \(-0.280497\pi\)
0.636220 + 0.771508i \(0.280497\pi\)
\(198\) 0 0
\(199\) −823.692 −0.293417 −0.146709 0.989180i \(-0.546868\pi\)
−0.146709 + 0.989180i \(0.546868\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −76.7791 −0.0265460
\(204\) 0 0
\(205\) 3878.59 1.32143
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1539.15 0.509404
\(210\) 0 0
\(211\) 107.343 0.0350228 0.0175114 0.999847i \(-0.494426\pi\)
0.0175114 + 0.999847i \(0.494426\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −857.405 −0.271975
\(216\) 0 0
\(217\) 96.7537 0.0302676
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 220.873 0.0672285
\(222\) 0 0
\(223\) 3933.68 1.18125 0.590625 0.806946i \(-0.298881\pi\)
0.590625 + 0.806946i \(0.298881\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1771.90 −0.518085 −0.259042 0.965866i \(-0.583407\pi\)
−0.259042 + 0.965866i \(0.583407\pi\)
\(228\) 0 0
\(229\) 1915.37 0.552713 0.276356 0.961055i \(-0.410873\pi\)
0.276356 + 0.961055i \(0.410873\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4396.32 −1.23610 −0.618052 0.786137i \(-0.712078\pi\)
−0.618052 + 0.786137i \(0.712078\pi\)
\(234\) 0 0
\(235\) 5108.32 1.41800
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4084.49 −1.10546 −0.552728 0.833362i \(-0.686413\pi\)
−0.552728 + 0.833362i \(0.686413\pi\)
\(240\) 0 0
\(241\) 3908.58 1.04471 0.522353 0.852730i \(-0.325054\pi\)
0.522353 + 0.852730i \(0.325054\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4955.56 1.29224
\(246\) 0 0
\(247\) −749.845 −0.193164
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1094.89 0.275335 0.137667 0.990479i \(-0.456040\pi\)
0.137667 + 0.990479i \(0.456040\pi\)
\(252\) 0 0
\(253\) 1224.89 0.304381
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −783.179 −0.190091 −0.0950454 0.995473i \(-0.530300\pi\)
−0.0950454 + 0.995473i \(0.530300\pi\)
\(258\) 0 0
\(259\) −40.3744 −0.00968628
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6180.06 1.44897 0.724484 0.689292i \(-0.242078\pi\)
0.724484 + 0.689292i \(0.242078\pi\)
\(264\) 0 0
\(265\) −5095.67 −1.18122
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −986.965 −0.223704 −0.111852 0.993725i \(-0.535678\pi\)
−0.111852 + 0.993725i \(0.535678\pi\)
\(270\) 0 0
\(271\) −4576.99 −1.02595 −0.512975 0.858404i \(-0.671457\pi\)
−0.512975 + 0.858404i \(0.671457\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1052.84 −0.230868
\(276\) 0 0
\(277\) 567.836 0.123169 0.0615847 0.998102i \(-0.480385\pi\)
0.0615847 + 0.998102i \(0.480385\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5311.01 −1.12750 −0.563752 0.825944i \(-0.690643\pi\)
−0.563752 + 0.825944i \(0.690643\pi\)
\(282\) 0 0
\(283\) 4728.44 0.993204 0.496602 0.867978i \(-0.334581\pi\)
0.496602 + 0.867978i \(0.334581\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 801.960 0.164941
\(288\) 0 0
\(289\) −3214.29 −0.654242
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2328.92 −0.464358 −0.232179 0.972673i \(-0.574585\pi\)
−0.232179 + 0.972673i \(0.574585\pi\)
\(294\) 0 0
\(295\) −1312.85 −0.259109
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −596.743 −0.115420
\(300\) 0 0
\(301\) −177.282 −0.0339481
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10974.4 −2.06030
\(306\) 0 0
\(307\) 1678.07 0.311962 0.155981 0.987760i \(-0.450146\pi\)
0.155981 + 0.987760i \(0.450146\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3572.71 0.651413 0.325707 0.945471i \(-0.394398\pi\)
0.325707 + 0.945471i \(0.394398\pi\)
\(312\) 0 0
\(313\) 7184.36 1.29739 0.648697 0.761047i \(-0.275314\pi\)
0.648697 + 0.761047i \(0.275314\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.7077 0.00278306 0.00139153 0.999999i \(-0.499557\pi\)
0.00139153 + 0.999999i \(0.499557\pi\)
\(318\) 0 0
\(319\) −274.943 −0.0482566
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5766.98 −0.993447
\(324\) 0 0
\(325\) 512.923 0.0875442
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1056.23 0.176996
\(330\) 0 0
\(331\) 1318.95 0.219022 0.109511 0.993986i \(-0.465072\pi\)
0.109511 + 0.993986i \(0.465072\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5086.22 0.829523
\(336\) 0 0
\(337\) −239.183 −0.0386621 −0.0193310 0.999813i \(-0.506154\pi\)
−0.0193310 + 0.999813i \(0.506154\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 346.472 0.0550220
\(342\) 0 0
\(343\) 2078.27 0.327160
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5862.79 −0.907006 −0.453503 0.891255i \(-0.649826\pi\)
−0.453503 + 0.891255i \(0.649826\pi\)
\(348\) 0 0
\(349\) 3491.73 0.535553 0.267776 0.963481i \(-0.413711\pi\)
0.267776 + 0.963481i \(0.413711\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10916.7 1.64600 0.822999 0.568043i \(-0.192299\pi\)
0.822999 + 0.568043i \(0.192299\pi\)
\(354\) 0 0
\(355\) 3080.69 0.460580
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11500.7 −1.69077 −0.845384 0.534160i \(-0.820628\pi\)
−0.845384 + 0.534160i \(0.820628\pi\)
\(360\) 0 0
\(361\) 12719.5 1.85442
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15013.9 2.15305
\(366\) 0 0
\(367\) −6767.01 −0.962493 −0.481246 0.876585i \(-0.659816\pi\)
−0.481246 + 0.876585i \(0.659816\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1053.61 −0.147441
\(372\) 0 0
\(373\) −5310.22 −0.737139 −0.368569 0.929600i \(-0.620152\pi\)
−0.368569 + 0.929600i \(0.620152\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 133.947 0.0182987
\(378\) 0 0
\(379\) 838.267 0.113612 0.0568059 0.998385i \(-0.481908\pi\)
0.0568059 + 0.998385i \(0.481908\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2832.16 −0.377851 −0.188925 0.981991i \(-0.560500\pi\)
−0.188925 + 0.981991i \(0.560500\pi\)
\(384\) 0 0
\(385\) −501.994 −0.0664520
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3111.25 −0.405519 −0.202759 0.979229i \(-0.564991\pi\)
−0.202759 + 0.979229i \(0.564991\pi\)
\(390\) 0 0
\(391\) −4589.49 −0.593608
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 19227.5 2.44922
\(396\) 0 0
\(397\) 14208.7 1.79626 0.898131 0.439728i \(-0.144925\pi\)
0.898131 + 0.439728i \(0.144925\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6261.68 0.779784 0.389892 0.920861i \(-0.372512\pi\)
0.389892 + 0.920861i \(0.372512\pi\)
\(402\) 0 0
\(403\) −168.794 −0.0208641
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −144.580 −0.0176082
\(408\) 0 0
\(409\) −4192.50 −0.506860 −0.253430 0.967354i \(-0.581559\pi\)
−0.253430 + 0.967354i \(0.581559\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −271.453 −0.0323421
\(414\) 0 0
\(415\) −6564.25 −0.776448
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9287.15 −1.08283 −0.541416 0.840755i \(-0.682112\pi\)
−0.541416 + 0.840755i \(0.682112\pi\)
\(420\) 0 0
\(421\) 13146.0 1.52185 0.760923 0.648842i \(-0.224746\pi\)
0.760923 + 0.648842i \(0.224746\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3944.84 0.450242
\(426\) 0 0
\(427\) −2269.13 −0.257168
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4909.67 0.548701 0.274351 0.961630i \(-0.411537\pi\)
0.274351 + 0.961630i \(0.411537\pi\)
\(432\) 0 0
\(433\) −11743.3 −1.30334 −0.651671 0.758502i \(-0.725932\pi\)
−0.651671 + 0.758502i \(0.725932\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15581.0 1.70558
\(438\) 0 0
\(439\) 11824.2 1.28551 0.642754 0.766073i \(-0.277792\pi\)
0.642754 + 0.766073i \(0.277792\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10102.1 1.08344 0.541722 0.840558i \(-0.317772\pi\)
0.541722 + 0.840558i \(0.317772\pi\)
\(444\) 0 0
\(445\) −22122.9 −2.35668
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 345.254 0.0362885 0.0181443 0.999835i \(-0.494224\pi\)
0.0181443 + 0.999835i \(0.494224\pi\)
\(450\) 0 0
\(451\) 2871.79 0.299839
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 244.562 0.0251983
\(456\) 0 0
\(457\) −10567.1 −1.08164 −0.540821 0.841138i \(-0.681886\pi\)
−0.540821 + 0.841138i \(0.681886\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4733.96 −0.478270 −0.239135 0.970986i \(-0.576864\pi\)
−0.239135 + 0.970986i \(0.576864\pi\)
\(462\) 0 0
\(463\) −3431.20 −0.344409 −0.172204 0.985061i \(-0.555089\pi\)
−0.172204 + 0.985061i \(0.555089\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5116.96 0.507034 0.253517 0.967331i \(-0.418413\pi\)
0.253517 + 0.967331i \(0.418413\pi\)
\(468\) 0 0
\(469\) 1051.66 0.103542
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −634.841 −0.0617125
\(474\) 0 0
\(475\) −13392.4 −1.29366
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11566.9 1.10335 0.551675 0.834059i \(-0.313989\pi\)
0.551675 + 0.834059i \(0.313989\pi\)
\(480\) 0 0
\(481\) 70.4363 0.00667696
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20002.9 −1.87275
\(486\) 0 0
\(487\) 18326.5 1.70525 0.852623 0.522527i \(-0.175010\pi\)
0.852623 + 0.522527i \(0.175010\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7617.58 −0.700156 −0.350078 0.936721i \(-0.613845\pi\)
−0.350078 + 0.936721i \(0.613845\pi\)
\(492\) 0 0
\(493\) 1030.17 0.0941108
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 636.980 0.0574899
\(498\) 0 0
\(499\) −12909.1 −1.15810 −0.579050 0.815292i \(-0.696576\pi\)
−0.579050 + 0.815292i \(0.696576\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10165.7 0.901121 0.450561 0.892746i \(-0.351224\pi\)
0.450561 + 0.892746i \(0.351224\pi\)
\(504\) 0 0
\(505\) −2398.74 −0.211371
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6449.93 −0.561666 −0.280833 0.959757i \(-0.590611\pi\)
−0.280833 + 0.959757i \(0.590611\pi\)
\(510\) 0 0
\(511\) 3104.36 0.268745
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −516.397 −0.0441848
\(516\) 0 0
\(517\) 3782.31 0.321752
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19327.4 1.62524 0.812620 0.582794i \(-0.198041\pi\)
0.812620 + 0.582794i \(0.198041\pi\)
\(522\) 0 0
\(523\) −6259.09 −0.523310 −0.261655 0.965161i \(-0.584268\pi\)
−0.261655 + 0.965161i \(0.584268\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1298.18 −0.107305
\(528\) 0 0
\(529\) 232.675 0.0191235
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1399.08 −0.113698
\(534\) 0 0
\(535\) −12363.2 −0.999079
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3669.20 0.293217
\(540\) 0 0
\(541\) −14008.2 −1.11323 −0.556616 0.830770i \(-0.687900\pi\)
−0.556616 + 0.830770i \(0.687900\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −15513.9 −1.21934
\(546\) 0 0
\(547\) 4949.45 0.386879 0.193440 0.981112i \(-0.438036\pi\)
0.193440 + 0.981112i \(0.438036\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3497.35 −0.270404
\(552\) 0 0
\(553\) 3975.60 0.305714
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3801.58 0.289188 0.144594 0.989491i \(-0.453812\pi\)
0.144594 + 0.989491i \(0.453812\pi\)
\(558\) 0 0
\(559\) 309.282 0.0234011
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9900.11 −0.741101 −0.370551 0.928812i \(-0.620831\pi\)
−0.370551 + 0.928812i \(0.620831\pi\)
\(564\) 0 0
\(565\) 4383.85 0.326425
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5329.16 −0.392636 −0.196318 0.980540i \(-0.562898\pi\)
−0.196318 + 0.980540i \(0.562898\pi\)
\(570\) 0 0
\(571\) 16962.6 1.24319 0.621597 0.783337i \(-0.286484\pi\)
0.621597 + 0.783337i \(0.286484\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −10658.0 −0.772989
\(576\) 0 0
\(577\) −15487.0 −1.11738 −0.558692 0.829375i \(-0.688697\pi\)
−0.558692 + 0.829375i \(0.688697\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1357.26 −0.0969169
\(582\) 0 0
\(583\) −3772.94 −0.268026
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11084.2 0.779373 0.389686 0.920948i \(-0.372583\pi\)
0.389686 + 0.920948i \(0.372583\pi\)
\(588\) 0 0
\(589\) 4407.22 0.308313
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4349.68 −0.301214 −0.150607 0.988594i \(-0.548123\pi\)
−0.150607 + 0.988594i \(0.548123\pi\)
\(594\) 0 0
\(595\) 1880.90 0.129596
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 13183.9 0.899299 0.449650 0.893205i \(-0.351549\pi\)
0.449650 + 0.893205i \(0.351549\pi\)
\(600\) 0 0
\(601\) −18765.0 −1.27361 −0.636806 0.771024i \(-0.719745\pi\)
−0.636806 + 0.771024i \(0.719745\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1797.63 −0.120800
\(606\) 0 0
\(607\) −21871.4 −1.46249 −0.731244 0.682116i \(-0.761060\pi\)
−0.731244 + 0.682116i \(0.761060\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1842.67 −0.122007
\(612\) 0 0
\(613\) −3527.85 −0.232445 −0.116222 0.993223i \(-0.537079\pi\)
−0.116222 + 0.993223i \(0.537079\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22728.1 1.48298 0.741490 0.670963i \(-0.234119\pi\)
0.741490 + 0.670963i \(0.234119\pi\)
\(618\) 0 0
\(619\) 21443.3 1.39237 0.696187 0.717861i \(-0.254879\pi\)
0.696187 + 0.717861i \(0.254879\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4574.25 −0.294163
\(624\) 0 0
\(625\) −18428.2 −1.17940
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 541.718 0.0343398
\(630\) 0 0
\(631\) −21532.0 −1.35844 −0.679219 0.733936i \(-0.737681\pi\)
−0.679219 + 0.733936i \(0.737681\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19574.9 −1.22332
\(636\) 0 0
\(637\) −1787.56 −0.111187
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20148.3 −1.24151 −0.620756 0.784004i \(-0.713174\pi\)
−0.620756 + 0.784004i \(0.713174\pi\)
\(642\) 0 0
\(643\) −28869.7 −1.77062 −0.885310 0.465000i \(-0.846054\pi\)
−0.885310 + 0.465000i \(0.846054\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1590.02 −0.0966155 −0.0483077 0.998833i \(-0.515383\pi\)
−0.0483077 + 0.998833i \(0.515383\pi\)
\(648\) 0 0
\(649\) −972.062 −0.0587932
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20028.1 −1.20024 −0.600122 0.799909i \(-0.704881\pi\)
−0.600122 + 0.799909i \(0.704881\pi\)
\(654\) 0 0
\(655\) 23780.8 1.41862
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10520.7 −0.621897 −0.310948 0.950427i \(-0.600647\pi\)
−0.310948 + 0.950427i \(0.600647\pi\)
\(660\) 0 0
\(661\) 3295.83 0.193938 0.0969690 0.995287i \(-0.469085\pi\)
0.0969690 + 0.995287i \(0.469085\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6385.51 −0.372360
\(666\) 0 0
\(667\) −2783.27 −0.161572
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8125.67 −0.467493
\(672\) 0 0
\(673\) −1187.64 −0.0680239 −0.0340119 0.999421i \(-0.510828\pi\)
−0.0340119 + 0.999421i \(0.510828\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13221.4 −0.750574 −0.375287 0.926909i \(-0.622456\pi\)
−0.375287 + 0.926909i \(0.622456\pi\)
\(678\) 0 0
\(679\) −4135.91 −0.233758
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13831.4 −0.774882 −0.387441 0.921894i \(-0.626641\pi\)
−0.387441 + 0.921894i \(0.626641\pi\)
\(684\) 0 0
\(685\) 23943.7 1.33554
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1838.10 0.101635
\(690\) 0 0
\(691\) 9817.07 0.540462 0.270231 0.962796i \(-0.412900\pi\)
0.270231 + 0.962796i \(0.412900\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −473.354 −0.0258350
\(696\) 0 0
\(697\) −10760.2 −0.584750
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −29949.8 −1.61368 −0.806838 0.590773i \(-0.798823\pi\)
−0.806838 + 0.590773i \(0.798823\pi\)
\(702\) 0 0
\(703\) −1839.09 −0.0986667
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −495.976 −0.0263835
\(708\) 0 0
\(709\) 11307.5 0.598959 0.299479 0.954103i \(-0.403187\pi\)
0.299479 + 0.954103i \(0.403187\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3507.36 0.184224
\(714\) 0 0
\(715\) 875.768 0.0458068
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −32623.4 −1.69214 −0.846070 0.533071i \(-0.821038\pi\)
−0.846070 + 0.533071i \(0.821038\pi\)
\(720\) 0 0
\(721\) −106.773 −0.00551518
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2392.33 0.122550
\(726\) 0 0
\(727\) 502.545 0.0256373 0.0128187 0.999918i \(-0.495920\pi\)
0.0128187 + 0.999918i \(0.495920\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2378.66 0.120353
\(732\) 0 0
\(733\) 8631.37 0.434935 0.217467 0.976068i \(-0.430220\pi\)
0.217467 + 0.976068i \(0.430220\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3765.95 0.188223
\(738\) 0 0
\(739\) 18357.5 0.913792 0.456896 0.889520i \(-0.348961\pi\)
0.456896 + 0.889520i \(0.348961\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11182.6 0.552155 0.276078 0.961135i \(-0.410965\pi\)
0.276078 + 0.961135i \(0.410965\pi\)
\(744\) 0 0
\(745\) −36076.4 −1.77415
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2556.29 −0.124706
\(750\) 0 0
\(751\) −16733.4 −0.813063 −0.406531 0.913637i \(-0.633262\pi\)
−0.406531 + 0.913637i \(0.633262\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −38280.2 −1.84524
\(756\) 0 0
\(757\) −24402.4 −1.17163 −0.585813 0.810446i \(-0.699225\pi\)
−0.585813 + 0.810446i \(0.699225\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −8469.33 −0.403434 −0.201717 0.979444i \(-0.564652\pi\)
−0.201717 + 0.979444i \(0.564652\pi\)
\(762\) 0 0
\(763\) −3207.74 −0.152199
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 473.570 0.0222941
\(768\) 0 0
\(769\) 32834.7 1.53973 0.769864 0.638208i \(-0.220324\pi\)
0.769864 + 0.638208i \(0.220324\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35571.4 1.65513 0.827564 0.561371i \(-0.189726\pi\)
0.827564 + 0.561371i \(0.189726\pi\)
\(774\) 0 0
\(775\) −3014.71 −0.139731
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 36530.0 1.68013
\(780\) 0 0
\(781\) 2281.01 0.104508
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −36783.6 −1.67244
\(786\) 0 0
\(787\) −15729.6 −0.712452 −0.356226 0.934400i \(-0.615937\pi\)
−0.356226 + 0.934400i \(0.615937\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 906.431 0.0407446
\(792\) 0 0
\(793\) 3958.67 0.177272
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7888.07 −0.350577 −0.175288 0.984517i \(-0.556086\pi\)
−0.175288 + 0.984517i \(0.556086\pi\)
\(798\) 0 0
\(799\) −14171.8 −0.627485
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 11116.6 0.488538
\(804\) 0 0
\(805\) −5081.73 −0.222494
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5896.97 −0.256275 −0.128138 0.991756i \(-0.540900\pi\)
−0.128138 + 0.991756i \(0.540900\pi\)
\(810\) 0 0
\(811\) −14197.9 −0.614744 −0.307372 0.951589i \(-0.599450\pi\)
−0.307372 + 0.951589i \(0.599450\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −40485.3 −1.74005
\(816\) 0 0
\(817\) −8075.35 −0.345803
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19841.7 0.843459 0.421729 0.906722i \(-0.361423\pi\)
0.421729 + 0.906722i \(0.361423\pi\)
\(822\) 0 0
\(823\) 28202.2 1.19449 0.597246 0.802058i \(-0.296262\pi\)
0.597246 + 0.802058i \(0.296262\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34031.0 1.43092 0.715462 0.698651i \(-0.246216\pi\)
0.715462 + 0.698651i \(0.246216\pi\)
\(828\) 0 0
\(829\) 4931.55 0.206610 0.103305 0.994650i \(-0.467058\pi\)
0.103305 + 0.994650i \(0.467058\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13748.0 −0.571836
\(834\) 0 0
\(835\) −40666.4 −1.68541
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −38189.8 −1.57146 −0.785731 0.618568i \(-0.787713\pi\)
−0.785731 + 0.618568i \(0.787713\pi\)
\(840\) 0 0
\(841\) −23764.3 −0.974384
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 32212.9 1.31143
\(846\) 0 0
\(847\) −371.687 −0.0150783
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1463.59 −0.0589556
\(852\) 0 0
\(853\) 42966.8 1.72469 0.862343 0.506325i \(-0.168997\pi\)
0.862343 + 0.506325i \(0.168997\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17281.5 0.688828 0.344414 0.938818i \(-0.388078\pi\)
0.344414 + 0.938818i \(0.388078\pi\)
\(858\) 0 0
\(859\) −9316.75 −0.370062 −0.185031 0.982733i \(-0.559239\pi\)
−0.185031 + 0.982733i \(0.559239\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9647.65 −0.380544 −0.190272 0.981731i \(-0.560937\pi\)
−0.190272 + 0.981731i \(0.560937\pi\)
\(864\) 0 0
\(865\) 34279.9 1.34746
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 14236.5 0.555742
\(870\) 0 0
\(871\) −1834.70 −0.0713735
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1336.55 −0.0516383
\(876\) 0 0
\(877\) 19728.7 0.759624 0.379812 0.925064i \(-0.375989\pi\)
0.379812 + 0.925064i \(0.375989\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −19473.9 −0.744712 −0.372356 0.928090i \(-0.621450\pi\)
−0.372356 + 0.928090i \(0.621450\pi\)
\(882\) 0 0
\(883\) −49092.4 −1.87100 −0.935499 0.353329i \(-0.885050\pi\)
−0.935499 + 0.353329i \(0.885050\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9292.86 0.351774 0.175887 0.984410i \(-0.443721\pi\)
0.175887 + 0.984410i \(0.443721\pi\)
\(888\) 0 0
\(889\) −4047.41 −0.152695
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 48112.0 1.80292
\(894\) 0 0
\(895\) 19493.9 0.728055
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −787.273 −0.0292069
\(900\) 0 0
\(901\) 14136.7 0.522709
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11932.3 0.438279
\(906\) 0 0
\(907\) −37688.7 −1.37975 −0.689875 0.723928i \(-0.742335\pi\)
−0.689875 + 0.723928i \(0.742335\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 33049.6 1.20196 0.600979 0.799265i \(-0.294778\pi\)
0.600979 + 0.799265i \(0.294778\pi\)
\(912\) 0 0
\(913\) −4860.31 −0.176180
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4917.06 0.177073
\(918\) 0 0
\(919\) 23148.0 0.830883 0.415442 0.909620i \(-0.363627\pi\)
0.415442 + 0.909620i \(0.363627\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1111.26 −0.0396290
\(924\) 0 0
\(925\) 1258.01 0.0447169
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23177.9 0.818561 0.409280 0.912409i \(-0.365780\pi\)
0.409280 + 0.912409i \(0.365780\pi\)
\(930\) 0 0
\(931\) 46673.3 1.64302
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6735.44 0.235585
\(936\) 0 0
\(937\) −34574.7 −1.20545 −0.602724 0.797950i \(-0.705918\pi\)
−0.602724 + 0.797950i \(0.705918\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −41831.2 −1.44916 −0.724578 0.689192i \(-0.757966\pi\)
−0.724578 + 0.689192i \(0.757966\pi\)
\(942\) 0 0
\(943\) 29071.3 1.00392
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27231.2 0.934419 0.467209 0.884147i \(-0.345259\pi\)
0.467209 + 0.884147i \(0.345259\pi\)
\(948\) 0 0
\(949\) −5415.79 −0.185252
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −40939.4 −1.39156 −0.695781 0.718254i \(-0.744942\pi\)
−0.695781 + 0.718254i \(0.744942\pi\)
\(954\) 0 0
\(955\) −25527.0 −0.864956
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4950.74 0.166703
\(960\) 0 0
\(961\) −28798.9 −0.966698
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −19910.3 −0.664182
\(966\) 0 0
\(967\) 46173.1 1.53550 0.767750 0.640750i \(-0.221376\pi\)
0.767750 + 0.640750i \(0.221376\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5153.91 −0.170337 −0.0851683 0.996367i \(-0.527143\pi\)
−0.0851683 + 0.996367i \(0.527143\pi\)
\(972\) 0 0
\(973\) −97.8734 −0.00322474
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9692.13 −0.317378 −0.158689 0.987329i \(-0.550727\pi\)
−0.158689 + 0.987329i \(0.550727\pi\)
\(978\) 0 0
\(979\) −16380.2 −0.534744
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32915.7 1.06800 0.534002 0.845483i \(-0.320687\pi\)
0.534002 + 0.845483i \(0.320687\pi\)
\(984\) 0 0
\(985\) −52269.7 −1.69081
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6426.54 −0.206625
\(990\) 0 0
\(991\) −29477.9 −0.944901 −0.472451 0.881357i \(-0.656630\pi\)
−0.472451 + 0.881357i \(0.656630\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12237.1 0.389892
\(996\) 0 0
\(997\) −31944.4 −1.01473 −0.507366 0.861731i \(-0.669381\pi\)
−0.507366 + 0.861731i \(0.669381\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.4.a.bc.1.1 2
3.2 odd 2 176.4.a.i.1.2 2
4.3 odd 2 99.4.a.c.1.1 2
12.11 even 2 11.4.a.a.1.2 2
20.19 odd 2 2475.4.a.q.1.2 2
24.5 odd 2 704.4.a.n.1.1 2
24.11 even 2 704.4.a.p.1.2 2
33.32 even 2 1936.4.a.w.1.2 2
44.43 even 2 1089.4.a.v.1.2 2
60.23 odd 4 275.4.b.c.199.1 4
60.47 odd 4 275.4.b.c.199.4 4
60.59 even 2 275.4.a.b.1.1 2
84.83 odd 2 539.4.a.e.1.2 2
132.35 odd 10 121.4.c.f.81.2 8
132.47 even 10 121.4.c.c.9.2 8
132.59 even 10 121.4.c.c.27.2 8
132.71 even 10 121.4.c.c.3.1 8
132.83 odd 10 121.4.c.f.3.2 8
132.95 odd 10 121.4.c.f.27.1 8
132.107 odd 10 121.4.c.f.9.1 8
132.119 even 10 121.4.c.c.81.1 8
132.131 odd 2 121.4.a.c.1.1 2
156.155 even 2 1859.4.a.a.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.2 2 12.11 even 2
99.4.a.c.1.1 2 4.3 odd 2
121.4.a.c.1.1 2 132.131 odd 2
121.4.c.c.3.1 8 132.71 even 10
121.4.c.c.9.2 8 132.47 even 10
121.4.c.c.27.2 8 132.59 even 10
121.4.c.c.81.1 8 132.119 even 10
121.4.c.f.3.2 8 132.83 odd 10
121.4.c.f.9.1 8 132.107 odd 10
121.4.c.f.27.1 8 132.95 odd 10
121.4.c.f.81.2 8 132.35 odd 10
176.4.a.i.1.2 2 3.2 odd 2
275.4.a.b.1.1 2 60.59 even 2
275.4.b.c.199.1 4 60.23 odd 4
275.4.b.c.199.4 4 60.47 odd 4
539.4.a.e.1.2 2 84.83 odd 2
704.4.a.n.1.1 2 24.5 odd 2
704.4.a.p.1.2 2 24.11 even 2
1089.4.a.v.1.2 2 44.43 even 2
1584.4.a.bc.1.1 2 1.1 even 1 trivial
1859.4.a.a.1.1 2 156.155 even 2
1936.4.a.w.1.2 2 33.32 even 2
2475.4.a.q.1.2 2 20.19 odd 2