Properties

Label 1584.4
Level 1584
Weight 4
Dimension 90437
Nonzero newspaces 32
Sturm bound 552960
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 32 \)
Sturm bound: \(552960\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1584))\).

Total New Old
Modular forms 209600 91165 118435
Cusp forms 205120 90437 114683
Eisenstein series 4480 728 3752

Trace form

\( 90437 q - 48 q^{2} - 48 q^{3} - 68 q^{4} - 61 q^{5} - 64 q^{6} - 63 q^{7} + 36 q^{8} + 24 q^{9} - 12 q^{10} + 30 q^{11} - 144 q^{12} + 39 q^{13} - 300 q^{14} - 6 q^{15} + 444 q^{16} + 97 q^{17} + 216 q^{18}+ \cdots + 1515 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1584))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1584.4.a \(\chi_{1584}(1, \cdot)\) 1584.4.a.a 1 1
1584.4.a.b 1
1584.4.a.c 1
1584.4.a.d 1
1584.4.a.e 1
1584.4.a.f 1
1584.4.a.g 1
1584.4.a.h 1
1584.4.a.i 1
1584.4.a.j 1
1584.4.a.k 1
1584.4.a.l 1
1584.4.a.m 1
1584.4.a.n 1
1584.4.a.o 1
1584.4.a.p 1
1584.4.a.q 1
1584.4.a.r 1
1584.4.a.s 1
1584.4.a.t 1
1584.4.a.u 1
1584.4.a.v 1
1584.4.a.w 2
1584.4.a.x 2
1584.4.a.y 2
1584.4.a.z 2
1584.4.a.ba 2
1584.4.a.bb 2
1584.4.a.bc 2
1584.4.a.bd 2
1584.4.a.be 2
1584.4.a.bf 2
1584.4.a.bg 2
1584.4.a.bh 2
1584.4.a.bi 2
1584.4.a.bj 2
1584.4.a.bk 2
1584.4.a.bl 3
1584.4.a.bm 3
1584.4.a.bn 3
1584.4.a.bo 3
1584.4.a.bp 3
1584.4.a.bq 4
1584.4.a.br 4
1584.4.b \(\chi_{1584}(593, \cdot)\) 1584.4.b.a 2 1
1584.4.b.b 2
1584.4.b.c 6
1584.4.b.d 6
1584.4.b.e 6
1584.4.b.f 6
1584.4.b.g 8
1584.4.b.h 18
1584.4.b.i 18
1584.4.d \(\chi_{1584}(287, \cdot)\) 1584.4.d.a 10 1
1584.4.d.b 10
1584.4.d.c 20
1584.4.d.d 20
1584.4.f \(\chi_{1584}(793, \cdot)\) None 0 1
1584.4.h \(\chi_{1584}(1495, \cdot)\) None 0 1
1584.4.k \(\chi_{1584}(1079, \cdot)\) None 0 1
1584.4.m \(\chi_{1584}(1385, \cdot)\) None 0 1
1584.4.o \(\chi_{1584}(703, \cdot)\) 1584.4.o.a 2 1
1584.4.o.b 2
1584.4.o.c 2
1584.4.o.d 4
1584.4.o.e 4
1584.4.o.f 8
1584.4.o.g 8
1584.4.o.h 12
1584.4.o.i 24
1584.4.o.j 24
1584.4.q \(\chi_{1584}(529, \cdot)\) n/a 360 2
1584.4.r \(\chi_{1584}(307, \cdot)\) n/a 716 2
1584.4.u \(\chi_{1584}(397, \cdot)\) n/a 600 2
1584.4.v \(\chi_{1584}(683, \cdot)\) n/a 480 2
1584.4.y \(\chi_{1584}(197, \cdot)\) n/a 576 2
1584.4.z \(\chi_{1584}(289, \cdot)\) n/a 356 4
1584.4.bc \(\chi_{1584}(175, \cdot)\) n/a 432 2
1584.4.be \(\chi_{1584}(329, \cdot)\) None 0 2
1584.4.bg \(\chi_{1584}(23, \cdot)\) None 0 2
1584.4.bh \(\chi_{1584}(439, \cdot)\) None 0 2
1584.4.bj \(\chi_{1584}(265, \cdot)\) None 0 2
1584.4.bl \(\chi_{1584}(815, \cdot)\) n/a 360 2
1584.4.bn \(\chi_{1584}(65, \cdot)\) n/a 428 2
1584.4.bq \(\chi_{1584}(127, \cdot)\) n/a 360 4
1584.4.bs \(\chi_{1584}(233, \cdot)\) None 0 4
1584.4.bu \(\chi_{1584}(71, \cdot)\) None 0 4
1584.4.bx \(\chi_{1584}(343, \cdot)\) None 0 4
1584.4.bz \(\chi_{1584}(361, \cdot)\) None 0 4
1584.4.cb \(\chi_{1584}(575, \cdot)\) n/a 288 4
1584.4.cd \(\chi_{1584}(17, \cdot)\) n/a 288 4
1584.4.cf \(\chi_{1584}(155, \cdot)\) n/a 2880 4
1584.4.cg \(\chi_{1584}(461, \cdot)\) n/a 3440 4
1584.4.cj \(\chi_{1584}(43, \cdot)\) n/a 3440 4
1584.4.ck \(\chi_{1584}(133, \cdot)\) n/a 2880 4
1584.4.cm \(\chi_{1584}(49, \cdot)\) n/a 1712 8
1584.4.cn \(\chi_{1584}(413, \cdot)\) n/a 2304 8
1584.4.cq \(\chi_{1584}(179, \cdot)\) n/a 2304 8
1584.4.cr \(\chi_{1584}(37, \cdot)\) n/a 2864 8
1584.4.cu \(\chi_{1584}(19, \cdot)\) n/a 2864 8
1584.4.cw \(\chi_{1584}(497, \cdot)\) n/a 1712 8
1584.4.cy \(\chi_{1584}(47, \cdot)\) n/a 1728 8
1584.4.da \(\chi_{1584}(25, \cdot)\) None 0 8
1584.4.dc \(\chi_{1584}(7, \cdot)\) None 0 8
1584.4.dd \(\chi_{1584}(119, \cdot)\) None 0 8
1584.4.df \(\chi_{1584}(41, \cdot)\) None 0 8
1584.4.dh \(\chi_{1584}(79, \cdot)\) n/a 1728 8
1584.4.dl \(\chi_{1584}(157, \cdot)\) n/a 13760 16
1584.4.dm \(\chi_{1584}(139, \cdot)\) n/a 13760 16
1584.4.dp \(\chi_{1584}(29, \cdot)\) n/a 13760 16
1584.4.dq \(\chi_{1584}(59, \cdot)\) n/a 13760 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1584))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1584)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 30}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(132))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(176))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(198))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(264))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(396))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(528))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(792))\)\(^{\oplus 2}\)